English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 737-746 前一篇   后一篇

所属专题: 计算化学

• 综述与评论 •

磷灰石晶体构型及其与生物分子相互作用的计算模拟研究

沈娟*, 金波, 蒋琪英, 钟国清, 霍冀川   

  1. 西南科技大学生物质材料教育部工程研究中心 绵阳 621010
  • 收稿日期:2011-09-01 修回日期:2011-11-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.50972096)、西南科技大学博士启动基金项目(No.10zx7118)和四川省非金属复合与功能材料重点实验室开放基金项目(No.10ZXFK18,10ZXFK32)资助

Computer Simulation Studies on Apatite Crystal and Its Interaction with Biologic Molecules

Shen Juan, Jin Bo, Jiang Qiying, Zhong Guoqing, Huo Jichuan   

  1. Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
  • Received:2011-09-01 Revised:2011-11-01 Online:2012-05-24 Published:2012-04-10
生物磷灰石是动物和人体骨骼及牙釉质的主要无机矿物成分,磷灰石矿物晶体的组成和结构影响了骨及牙釉质的机械强度和生理功能。羟基磷灰石空间群的确定一直存在争议,其中羟基存在两种不同排列方式,使得其具有六方和单斜两种晶相。另外,磷灰石晶体结构中的类质同象替换,影响了其结构、物理和化学特性。本文综述了计算机模拟方法在原子及分子水平上对磷灰石晶体的空间群确定、磷灰石替代机制、小分子及生物大分子相互作用的研究,对磷灰石晶体化学、界面化学及开发生物材料的深入研究具有一定的科学意义和较强的应用价值。
Biological apatite is the main inorganic mineral component of animal and human bone and tooth enamel, moreover apatite mineral composition and structure affect on the bone and tooth enamel mechanical strength and physiological behavior. The structure of hydroxyapatite (HAP) has proved more difficult to resolve, two different hydroxyl arrangements may occur in HAP resulting in hexagonal and monoclinic structures. Extensive isomorphic substitutions may greatly affect the properties of this mineral. In the paper, computational methods are well placed to calculate at the atomic level the geometry and relative energies of the various possible hydroxy groups in apatite, and they have been employed to study the uptake and distribution of small molecule or biomacromolecule in the hydroxyapatite. Application of computer simulation at the atomic level to investigate apatites, especially HAP, is anticipated to provide a deeper understanding of crystal chemistry and interaction with biomacromolecules. These results offer a more comprehensive investigation of bio-apatite and perspective applications.

Contents
1 Introduction
2 Applications of computer simulation to the apatite crystal
3 Applications of computer simulation to the apatite substitution
4 The interaction of apaptite and other molecules or ions
4.1 The interaction of apaptite and water molecules
4.2 The interaction of apaptite and haloid ions
4.3 The interaction of apaptite and citric acid molecules
4.4 The interaction of apaptite and biologic molecules
5 Conclusions and Outlook

中图分类号: 

()
[1] Dorozhkin S V, Epple M. Chem. Inform., 2002, 33: 267—267
[2] Narasaraju T S B, Phebe D E. J. Mater. Sci., 1996, 31: 1—21
[3] Dorozhkin S V, Epple M. Angew. Chem. Int. Ed., 2002, 41: 3130—3146
[4] Cho G, Wu Y, Ackerman J L. Science, 2003, 300: 1123—1127
[5] Loong C K, Rey C, Kuhn L T, Combes C, Wu Y, Chen S H, Glimcher M J. Bone, 2000, 26: 599—602
[6] Taylor M G, Parker S F, Simkiss K, Mitchell P C H. Phys. Chem. Chem. Phys., 2001, 3: 1514—1517
[7] Hauptmann S, Dufner H, Brickmann J, Kast S M, Berry R S. Phys. Chem. Chem. Phys., 2003, 5: 635—639
[8] Lee W T, Dove M T, Salje E K H. J. Phys. Condens. Matter, 2000, 12: 9829—9841
[9] Rabone J, de Leeuw N. Phys. Chem. Miner., 2007, 34: 495—506
[10] Rabone J A L, de Leeuw N H. J. Comput. Chem., 2006, 27: 253—266
[11] De Leeuw N H. J. Mater. Chem., 2010, 20: 5376—5389
[12] Elliott J C, Mackie P E, Young R A. Science, 1973, 180: 1055—1057
[13] Kay M I, Young R A, Posner A S. Nature, 1964, 204: 1050—1052
[14] Sudarsanan K, Young R A. Acta Crystallogr. Sect. B: Struct. Sci., 1969, 25: 1534—1543
[15] Hochrein O, Kniep R, Zahn D. Chem. Mater., 2005, 17: 1978—1981
[16] Suda H, Yashima M, Kakihana M, Yoshimura M. J. Phys. Chem., 1995, 99: 6752—6754
[17] Takahashi H, Yashima M, Kakihana M, Yoshimura M. Thermochim. Acta, 2001, 371: 53—56
[18] Zahn D, Hochrein O. Z. Anorg. Allg. Chem., 2005, 631: 1134—1138
[19] Ma G, Liu X Y. J. Cryst. Growth, 2009, 9: 2991—2994
[20] De Leeuw N H. Chem. Commun., 2001, 1646—1647
[21] De Leeuw N H. Phys. Chem. Chem. Phys., 2002, 4: 3865—3871
[22] Pedone A, Corno M, Civalleri B, Malavasi G, Menziani M C, Segre U, Ugliengo P. J. Mater. Chem., 2007, 17: 2061—2068
[23] Zahn D, Hochrein O. Z. Anorg. Allg. Chem., 2006, 632: 79—83
[24] Calderín L, Stott M J, Rubio A. Phys. Rev. B, 2003, 67: art. no. 134106
[25] Haverty D, Tofail S A M, Stanton K T, McMonagle J B. Phys. Rev. B, 2005, 71: art. no. 094103
[26] Nakamura S, Takeda H, Yamashita K. J. Appl. Phys., 2001, 89: 5386—5392
[27] Hitmi N, LaCabanne C, Young R A. J. Phys. Chem. Solids, 1988, 49: 541—550
[28] Mostafa N Y, Brown P W. J. Phys. Chem. Solids, 2007, 68: 431—437
[29] Cruz F J A L, Canongia Lopes J N, Calado J C G, Minas da Piedade M E. J. Phys. Chem. B, 2005, 109: 24473—24479
[30] Cruz F J A L, Canongia Lopes J N, Calado J C G. J. Phys. Chem. B, 2006, 110: 4387—4392
[31] Cruz F J A L, Lopes J N C, Calado J C G. Fluid Phase Equilib., 2007, 253: 142—146
[32] Zahn D, Hochrein O. J. Solid State Chem., 2008, 181: 1712—1716
[33] Posner A S. Physiol. Rev., 1969, 49: 760—792
[34] Fleet M E, Liu X. J. Solid State Chem., 2004, 177: 3174—3182
[35] Fleet M E, Liu X. Biomaterials, 2005, 26: 7548—7554
[36] Wilson R M, Elliott J C, Dowker S E P, Smith R I. Biomaterials, 2004, 25: 2205—2213
[37] Peeters A, de Maeyer E A P, van Alsenoy C, Verbeeck R M H. J. Phys. Chem. B, 1997, 101: 3995—3998
[38] Astala R, Stott M J. Chem. Mater., 2005, 17: 4125—4133
[39] Peroos S, Du Z, de Leeuw N H. Biomaterials, 2006, 27: 2150—2161
[40] Wilson E E, Awonusi A, Morris M D, Kohn D H, Tecklenburg M M, Beck L W. J. Bone Miner. Res., 2005, 20: 625—634
[41] Wilson E E, Awonusi A, Morris M D, Kohn D H, Tecklenburg M M J, Beck L W. Biophys. J., 2006, 90: 3722—3731
[42] Corno M, Rimola A, Bolis V, Ugliengo P. Phys. Chem. Chem. Phys., 2010, 12: 6309—6329
[43] Cooper T G, de Leeuw N H. Langmuir, 2004, 20: 3984—3994
[44] Tilocca A, Cormack A N. ACS Appl. Mater. Interfaces, 2009, 1: 1324—1333
[45] Mkhonto D, de Leeuw N H. J. Mater. Chem., 2002, 12: 2633—2642
[46] Zahn D, Hochrein O. Phys. Chem. Chem. Phys., 2003, 5: 4004—4007
[47] Pan H, Tao J, Wu T, Tang R. Frontiers of Chemistry in China, 2007, 2: 156—163
[48] De Leeuw N H. Phys. Chem. Chem. Phys., 2004, 6: 1860—1866
[49] Filgueiras M R T, Mkhonto D, de Leeuw N H. J. Cryst. Growth, 2006, 294: 60—68
[50] De Leeuw N H, Rabone J A L. Cryst. Eng. Comm., 2007, 9: 1178—1186
[51] Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Science, 2005, 307: 1450—1454
[52] Koutsopoulos S, Dalas E. Langmuir, 2001, 17: 1074—1079
[53] Matsumoto T, Okazaki M, Inoue M, Hamada Y, Taira M, Takahashi J. Biomaterials, 2002, 23: 2241—2247
[54] Koutsopoulos S, Dalas E. J. Colloid Interface Sci., 2000, 231: 207—212
[55] Gajjeraman S, Narayanan K, Hao J, Qin C, George A. J. Biol. Chem., 2007, 282: 1193—1204
[56] Hunter G K, Hauschka P V, Poole A R, Rosenberg L C, Goldberg H A. Biochem. J., 1996, 317: 59—64
[57] Koutsopoulos S, Dalas E. Langmuir, 2000, 16: 6739—6744
[58] Jack K S, Vizcarra T G, Trau M. Langmuir, 2007, 23: 12233—12242
[59] Duffy D M, Harding J H. Langmuir, 2004, 20: 7637—7642
[60] Harding J H, Duffy D M. J. Mater. Chem., 2006, 16: 1105—1112
[61] Santos O, Kosoric J, Hector M P, Anderson P, Lindh L. J. Colloid Interface Sci., 2008, 318: 175—182
[62] Bhowmik R, Katti K S, Katti D. Polymer, 2007, 48: 664—674
[63] Mkhonto D, Ngoepe P, Cooper T, de Leeuw N. Phys. Chem. Miner., 2006, 33: 314—331
[64] Shen J W, Wu T, Wang Q, Pan H H. Biomaterials, 2008, 29: 513—532
[65] Zhang Z S, Pan H H, Tang R K. Frontiers of Materials Science in China, 2008, 2: 239—245
[66] Pan H, Tao J, Xu X, Tang R. Langmuir, 2007, 23: 8972—8981
[67] Busch S, Dolhaine H, DuChesne A, Heinz S, Hochrein O, Laeri F, Podebrad O, Vietze U, Weiland T, Kniep R. Eur. J. Inorg. Chem., 1999, 1643—1653
[68] Busch S, Schwarz U, Kniep R. Chem. Mater., 2001, 13: 3260—3271
[69] Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R. Angew. Chem. Int. Ed., 2006, 45: 1905—1910
[70] Vaidyanathan T K, Vaidyanathan J. J. Biomed. Mater. Res. B, 2009, 88B: 558—578
[71] Paparcone R, Kniep R, Brickmann J. Phys. Chem. Chem. Phys., 2009, 11: 2186—2194
[72] Brickmann J, Paparcone R, Kokolakis S, Zahn D, Duchstein P, Carrillo-Cabrera W, Simon P, Kniep R. Chem. Phys. Chem., 2010, 11: 1851—1853
[73] Simon P, Zahn D, Lichte H, Kniep R. Angew. Chem. Int. Ed., 2006, 45: 1911—1915
[74] Batina N, Renugopalakrishnan V, Casillas Lavín P N, Guerrero J C H, Morales M, Garduo-Juárez R, Lakka S L. Calcif. Tissue Int., 2004, 74: 294—301
[75] Shaw W J, Campbell A A, Paine M L, Snead M L. J. Biol. Chem., 2004, 279: 40263—40266
[76] Raut V P, Agashe M A, Stuart S J, Latour R A. Langmuir, 2005, 21: 1629—1639
[77] Almora-Barrios N, de Leeuw N H. Cryst. Eng. Comm., 2010, 12: 960—967
[78] Brès E F, Hutchison J L. J. Biomed. Mater. Res., 2002, 63: 433—440
[79] Almora-Barrios N, Austen K F, de Leeuw N H. Langmuir, 2009, 25: 5018—5025
[80] Almora-Barrios N, de Leeuw N H. Langmuir, 2010, 26: 14535—14542
[81] Schepers T, Brickmann J, Hochrein O, Zahn D. Z. Anorg. Allg. Chem., 2007, 633: 411—414
[82] Kawska A, Hochrein O, Brickmann J, Kniep R, Zahn D. Angew. Chem. Int. Ed., 2008, 47: 4982—4985
[83] Ganss B, Kim R H, Sodek J. Crit. Rev. Oral Biol. Medicine, 1999, 10: 79—98
[84] George A, Veis A. Chem. Rev., 2008, 108: 4670—4693
[85] Yang Y, Cui Q, Sahai N. Langmuir, 2010, 26: 9848—9859
[86] Makrodimitris K, Masica D L, Kim E T, Gray J J. J. Am. Chem. Soc., 2007, 129: 13713—13722
[87] Dong X L, Zhou H L, Wu T, Wang Q. J. Phys. Chem. B, 2008, 112: 4751—4759
[88] Dong X, Wang Q, Wu T, Pan H. Biophys. J., 2007, 93: 750—759
[89] Zhou H, Wu T, Dong X, Wang Q, Shen J. Biochem. Biophys. Res. Commun., 2007, 361: 91—96
[90] Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K. J. Mol. Graph. Model., 2001, 19: 13—25
[91] Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N. Matrix Biol., 2002, 21: 197—205
[92] Chen X, Wang Q, Shen J, Pan H, Wu T. J. Phys. Chem. C, 2006, 111: 1284—1290
[93] Kawska A, Brickmann J, Kniep R, Hochrein O, Zahn D. J. Chem. Phys., 2006, 124: 24513—24517
[94] De Yoreo J J, Dove P M. Science, 2004, 306: 1301—1302
[95] Wang L, Nancollas G H. Chem. Rev., 2008, 108: 4628—4669
[96] Teng H H, Dove P M, Orme C A, de Yoreo J J. Science, 1998, 282: 724—727
[97] Orme C A, Noy A, Wierzbicki A, McBride M T, Grantham M, Teng H H, Dove P M, de Yoreo J J. Nature, 2001, 411: 775—779
[98] Hoang Q Q, Sicheri F, Howard A J, Yang D S C. Nature, 2003, 425: 977—980
[1] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[2] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[3] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[4] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[5] 王晓方, 胡殷, 潘启发, 杨瑞龙, 龙重, 刘柯钊. 铀氮化物晶体结构及电子结构[J]. 化学进展, 2018, 30(12): 1803-1818.
[6] 吴媛媛, 潘海华, 唐睿康. 胶原矿化与仿生修复[J]. 化学进展, 2018, 30(10): 1503-1510.
[7] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[8] 鲁闻生, 王海飞, 张建平, 江龙. 金纳米棒的制备、生长机理及纯化[J]. 化学进展, 2015, 27(7): 785-793.
[9] 陈峰, 朱英杰. 磷酸钙纳米结构材料的微波辅助液相合成[J]. 化学进展, 2015, 27(5): 459-471.
[10] 廖建国, 李艳群, 段星泽, 朱伶俐. 纳米羟基磷灰石/聚合物复合骨修复材料[J]. 化学进展, 2015, 27(2/3): 220-228.
[11] 杨峰, 梁宏*. 人血清白蛋白及其复合物的结构基础[J]. 化学进展, 2013, 25(04): 530-538.
[12] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[13] 任红, 张萍, 吴平, 芦菲. 含三唑-有机羧酸混合配体的配位聚合物[J]. 化学进展, 2012, 24(05): 769-775.
[14] 刘春立, 王路化. 铀酰配合物单晶的合成与结构[J]. 化学进展, 2011, 23(7): 1372-1378.
[15] 王东琪, Wilfred F. van Gunsteren. 锕系计算化学进展[J]. 化学进展, 2011, 23(7): 1566-1581.