English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 722-736 前一篇   后一篇

• 综述与评论 •

染料敏化太阳电池阻抗特性研究

刘伟庆1,2, 寇东星1, 蔡墨朗1, 胡林华1, 戴松元1*   

  1. 1. 中国科学院等离子体物理研究所 中国科学院新型薄膜太阳电池重点实验室 合肥 230031;
    2. 南昌航空大学测试与光电工程学院 无损检测技术教育部重点实验室 南昌 330063
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2011CBA00700)、国家高技术发展计划(863)项目(No.2011AA050527,2011AA050510)、国家自然科学基金项目(No.21173228)和中国博士后科学基金项目(No.20110490835)资助

Impedance Characteristics of Dye Sensitized Solar Cells

Liu Weiqing1,2, Kou Dongxing1, Cai Molang1, Hu Linhua1, Dai Songyuan1*   

  1. 1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
    2. Key Laboratory of Nondestructive Testing of Ministry of Education, School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
电化学阻抗谱(EIS)是染料敏化太阳电池(DSC)领域中最重要的研究手段之一。本文详细介绍了EIS在DSC研究中的理论模型、实验方法、内部电荷传输和转移过程、阻抗信息提取和动力学过程解析的最新研究进展;综述了其在光阳极、电解液体系、对电极、稳定性、新结构设计等DSC各个研究领域中的应用,特别总结了DSC内部各个组成部分的阻抗特性。最后,对这些方面存在的问题进行了评论,并对未来新材料和电池机理的深入研究进行了展望。
Dye-sensitized solar cells (DSC) are regarded as a potential low-cost alternative to conventional solar cells and have attracted considerable interest during the past decades. The working mechanism of DSC is not yet fully been understood and needs further investigation. Electrochemical impedance spectroscopy (EIS) is a powerful technique to identify and study the working mechanism in DSC. Through the EIS measurements, some parameters, such as electron transfer resistance, electron transport resistance, capacitance, ion diffusion resistance, electron diffusion constant and electron lifetime, etc. can be obtained. After further processing of these data, the charge transport kinetics, the electron transfer kinetics, the electron collection kinetics, the semiconductor energy level changes and the density of states distribution can be analyzed. This paper summarizes the basic theory and experimental methods of EIS application in DSC. The latest research progress about the charge transport process, the electron transfer process, the impedance of DSC information extraction and the dynamic process analysis are reviewed. Furthermore, the application of EIS in various research fields of DSC, such as photoanode, electrolyte system, counter electrode, stability test, new structure design are introduced. Especially, the impedance characteristics of the various components of DSC are summed up and the latest progress in the study of the work mechanism in DSC are systematically summarized. The current problems existed in the research of EIS application for DSC are discussed and the future development is prospected.

Contents
1 Introduction
2 Basic theory of EIS application in DSC
2.1 Light and dark impedance characteristic research
2.2 Study on frequency response of DSC internal processes
2.3 Study on the mathematical model of EIS
3 Experimental methods of EIS application in DSC
3.1 The two electrodes and the three electrodes measuring system
3.2 The difference and connection between optical/electrical impedance in the frequency domain
4 Analysis of DSC impedance information
4.1 Study on the construction of DSC equivalent circuit
4.2 The impedance of the DSC information extraction and dynamic process analysis
5 The impedance characteristics of DSC
5.1 The impedance characteristics of optical anode
5.2 The impedance characteristics of the electrolyte system
5.3 The impedance characteristics of the counter electrode
5.4 The impedance characteristics of the dye/co-adsorbent
5.5 The impedance characteristics of the conductive substrate
5.6 EIS application in the stability
5.7 EIS application in the new structure cell
6 Summary and outlook

中图分类号: 

()
[1] Gratzel M. Nature, 2001, 414: 338—344
[2] 朱俊(Zhu J), 戴松元(Dai S Y), 张耀红(Zhang Y H). 化学进展(Progress in Chemistry), 2011, 22: 822—828
[3] Bisquert J. J. Phys. Chem. B, 2002, 106: 325—333
[4] Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595—6663
[5] Liu W Q, Hu L H, Dai S Y, Guo L, Jiang N Q, Kou D. Electrochim. Acta, 2010, 55: 2338—2343
[6] Huang S Y, Schlichthorl G, Nozik A J, Gratzel M, Frank A J. J. Phys. Chem. B, 1997, 101: 2576—2582
[7] Wang Q, Moser J E, Gratzel M. J. Phys. Chem. B, 2005, 109: 14945—14953
[8] 刘伟庆 (Liu W Q), 寇东星(Kou D X), 胡林华(Hu L H), 黄阳(Huang Y), 姜年权(Jiang N Q), 戴松元(Dai S Y). 物理学报(Acta Physica Sinica), 2010, 59: 5141—5147
[9] 张鉴清(Zhang J Q). 电化学测试技术(Electrochemical Measurement Technology), 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2010
[10] Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Appl. Phys. Lett., 2005, 86: 3501—3503
[11] Koide N, Islam A, Chiba Y, Han L Y. J. Photochem. Photobiol. A, 2006, 182: 296—305
[12] Han L Y, Koide N, Chiba Y, Islam A, Mitate T. C. R. Chim., 2006, 9: 645—651
[13] Liu W Q, Kou D X, Hu L H, Dai S Y. Chem. Phys. Lett., 2011, 513: 145—148
[14] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Sol. Energy Mater. Sol. Cells, 2005, 87: 117—131
[15] Cameron P J, Peter L M, Hore S. J. Phys. Chem. B, 2005, 109: 930—936
[16] Schlichthorl G, Huang S Y, Sprague J, Frank A J. J. Phys. Chem. B, 1997, 101: 8141—8155
[17] Bisquert J. J. Phys. Chem. B, 2004, 108: 2323—2332
[18] Sastrawan R. Dissertation zur Erlangung des Dok-torgrades der Fakultt für Mathematik und Physik der Albert-Ludwigs-Universitt Freiburg im Breisgau, 2006
[19] Kern R, Sastrawan R, Ferber J, Stangl R, Luther J. Electrochim. Acta, 2002, 47: 4213—4225
[20] Wang Q, Ito S, Gratzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H. J. Phys. Chem. B, 2006, 110: 25210—25221
[21] Bisquert J. Phys. Chem. Chem. Phys., 2003, 5: 5360—5364
[22] Bisquert J, Garcia-Belmonte G. Russ. J. Electrochem., 2004, 40: 352—358
[23] Wei T C, Wan C C, Wang Y Y, Chen C M, Shiu H S. J. Phys. Chem. C, 2007, 111: 4847—4853
[24] Hoshikawa T, Yamada M, Kikuchi R, Eguchi K. J. Electroanal. Chem., 2005, 577: 339—348
[25] Hoshikawa T, Kikuchi R, Eguchi K. J. Electroanal. Chem., 2006, 588: 59—67
[26] Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I. J. Phys. Chem. B, 1997, 101: 10281—10289
[27] Peter L M, Wijayantha K G U. Electrochim. Acta, 2000, 45: 4543—4551
[28] 刘伟庆(Liu W Q), 胡林华(Hu L H), 霍志鹏(Huo Z P), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2009, 21: 1085—1093
[29] Peter L M, Duffy N W, Wang R L, Wijayantha K G U. J. Electroanal. Chem., 2002, 524: 127—136
[30] 刘伟庆(Liu W Q). 中国科学院研究生院博士论文(Doctoral Dissertation of Graduate University of Chinese Academy of Sciences), 2010
[31] Van de Lagemaat J, Park N G, Frank A J. J. Phys. Chem. B, 2000, 104: 2044—2052
[32] Bisquert J, Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I. Phys. Chem. Chem. Phys., 2011, 13: 9083—9118
[33] Wang M, Chen P, Humphry-Baker R, Zakeeruddin S M, Gratzel M. ChemPhysChem, 2009, 10: 290—299
[34] Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M K, Zakeeruddin S M, Gratzel M. J. Am. Chem. Soc., 2009, 131: 558—562
[35] Bisquert J, Gratzel M, Wang Q, Fabregat-Santiago F. J. Phys. Chem. B, 2006, 110: 11284—11290
[36] Yong V, Ho S T, Chang R P H. Appl. Phys. Lett., 2008, 92: 143506—143508
[37] Gratzel M, Wang Q, Ito S, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H. J. Phys. Chem. B, 2006, 110: 25210—25221
[38] Gratzel M, Wang Q, Moser J E. J. Phys. Chem. B, 2005, 109: 14945—14953
[39] Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Appl. Phys. Lett., 2005, 86: art. no. 213501
[40] Adachi M, Sakamoto M, Jiu J T, Ogata Y, Isoda S. J. Phys. Chem. B, 2006, 110: 13872—13880
[41] Wang Q, Zhang Z P, Zakeeruddin S M, Gratzel M. J. Phys. Chem. C, 2008, 112: 10585—10585
[42] Wang Q, Zhang Z, Zakeeruddin S M, Gratzel M. J. Phys. Chem. C, 2008, 112: 7084—7092
[43] Wang Q, Jennings J R. J. Phys. Chem. C, 2010, 114: 1715—1724
[44] Lee W J, Ramasamy E, Lee D Y. Sol. Energy Mater. Sol. Cells, 2009, 93: 1448—1451
[45] Dai S, Weng J, Sui Y F, Shi C W, Huang Y, Chen S H, Pan X, Fang X Q, Hu L H, Kong F T, Wang K J. Sol. Energy Mater. Sol. Cells, 2004, 84: 125—133
[46] Lee K M, Suryanarayanan V, Ho K C. Sol. Energy Mater. Sol. Cells, 2006, 90: 2398—2404
[47] Kang S H, Kim J Y, Kim H S, Koh H D, Lee J S, Sung Y E. J. Photochem. Photobiol. A, 2008, 200: 294—300
[48] Li X, Lin H, Li J B, Li X X, Cui B, Zhang L Z. J. Phys. Chem. C, 2008, 112: 13744—13753
[49] Zhao D, Peng T Y, Lu L L, Cai P, Jiang P, Bian Z Q. J. Phys. Chem. C, 2008, 112: 8486—8494
[50] 林原(Lin Y), 王尚华(Wang S H), 付年庆(Fu N Q), 张敬波(Zhang J B), 周晓文(Zhou X W), 肖绪瑞(Xiao X R). 化学进展(Progress in Chemistry), 2011, 23: 548—556
[51] Hsu C P, Lee K M, Huang J T W, Lin C Y, Lee C H, Wang L P, Tsai S Y, Ho K C. Electrochim. Acta, 2008, 53: 7514—7522
[52] Sommeling P M, O'Regan B C, Haswell R R, Smit H J P, Bakker N J, Smits J J T, Kroon J M, van Roosmalen J A M. J. Phys. Chem. B, 2006, 110: 19191—19197
[53] Chang R P H, Lee B, Hwang D K, Guo P J, Ho S T, Buchholtz D B, Wang C Y. J. Phys. Chem. B, 2010, 114: 14582—14591
[54] Fabregat-Santiago F, Garcia-Canadas J, Palomares E, Clifford J N, Haque S A, Durrant J R, Garcia-Belmonte G, Bisquert J. J. Appl. Phys., 2004, 96: 6903—6907
[55] Dai S Y, Tian H J, Hu L H, Zhang C N, Liu W Q, Huang Y, Mo L, Guo L, Sheng J. J. Phys. Chem. C, 2010, 114: 1627—1632
[56] Dai S Y, Tian H J, Hu L H, Zhang C N, Chen S H, Sheng J A, Mo L, Liu W Q. J. Mater. Chem., 2011, 21: 863—868
[57] He C, Zheng Z, Tang H L, Zhao L N, Lu F. J. Phys. Chem. C, 2009, 113: 10322—10325
[58] Xu T, Yang Z Z, Gao S M, Welp U, Kwok W K. J. Phys. Chem. C, 2010, 114: 19151—19156
[59] Hauch A, Georg A. Electrochim. Acta, 2001, 46: 3457—3466
[60] Sauvage F, Chhor S, Marchioro A, Moser J E, Graetzel M. J. Am. Chem. Soc., 2011, 133(33): 13103—13109
[61] Hoshikawa T, Ikebe T, Kikuchi R, Eguchi K. Electrochim. Acta, 2006, 51: 5286—5294
[62] Meng Q B, Qin D, Guo X Z, Sun H C, Luo Y H, Li D M. Prog. Chem., 2011, 23: 557—568
[63] Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D B, Zakeeruddin S M, Gratzel M. J. Phys. Chem. C, 2007, 111: 6550—6560
[64] Chen P Y, Lee C P, Vittal R, Ho K C. J. Power Sources, 2010, 195: 3933—3938
[65] Huo Z P, Dai S Y, Wang K J, Kong F T, Zhang C N, Pan X, Fang X Q. Sol. Energy Mater. Sol. Cells, 2007, 91: 1959—1965
[66] Shi C W, Dai S Y, Wang K J, Pan X, Zeng L Y, Hu L H, Kong F T, Guo L. Electrochim. Acta, 2005, 50: 2597—2602
[67] Liberatore M, Burtone L, Brown T M, Reale A, di Carlo A, Decker F, Caramori S, Bignozzi C A. Appl. Phys. Lett., 2009, 94: 173113—173115
[68] Jennings J R, Wang Q. J. Phys. Chem. C, 2010, 114: 1715—1724
[69] Hara K, Dan-Oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H. Langmuir, 2004, 20: 4205—4210
[70] Nakade S, Makimoto Y, Kubo W, Kitamura T, Wada Y, Yanagida S. J. Phys. Chem. B, 2005, 109: 3488—3493
[71] 戴松元(Dai S Y), 肖尚锋(Xiao S F), 史成武(Shi C W), 陈双宏(Chen S H), 黄阳(Huang Y), 孔凡太(Kong F T), 胡林华(Hu L H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005, 26: 518—521
[72] Hoshikawa T, Yamada M, Kikuchi R, Eguchi K. J. Electrochem. Soc., 2005, 152: E68—E73
[73] Chen L L, Tan W W, Zhang J B, Zhou X W, Zhang X L, Lin Y. Electrochim. Acta, 2010, 55: 3721—3726
[74] Cai F S, Liang J, Tao Z H, Chen J, Xu R S. J. Power Sources, 2008, 177: 631—636
[75] Chen J K, Li K X, Luo Y H, Guo X Z, Li D M, Deng M H, Huang S Q, Meng Q B. Carbon, 2009, 47: 2704—2708
[76] Wang G Q, Wang L A, Xing W, Zhuo S P. Mater. Chem. Phys., 2010, 123: 690—694
[77] Chen L L, Liu J, Zhang J B, Zhou X W, Zhang X L, Lin Y A. Chin. Chem. Lett., 2010, 21: 1137—1140
[78] Ramasamy E, Lee W J, Lee D Y, Song J S. Appl. Phys. Lett., 2007, 90: art. no. 173103
[79] Jiang Q W, Li G R, Wang F, Gao X P. Electrochem. Commun., 2010, 12: 924—927
[80] Aitola K, Kaskela A, Halme J, Ruiz V, Nasibulin A G, Kauppinen E I, Lunda P D. J. Electrochem. Soc., 2010, 157: B1831—B1837
[81] Lee W J, Ramasamy E, Lee D Y, Song J S. ACS Applied Materials & Interfaces, 2009, 1: 1145—1149
[82] Lee K M, Chen P Y, Hsu C Y, Huang J H, Ho W H, Chen H C, Ho K C. J. Power Sources, 2009, 188: 313—318
[83] Makris T, Dracopoulos V, Stergiopoulos T, Lianos P. Electrochim. Acta, 2011, 56: 2004—2008
[84] Qin Q, Tao J, Yang Y. Synth. Met., 2010, 160: 1167—1172
[85] Zhang J, Li X X, Guo W, Hreid T, Hou J F, Su H Q,Yuan Z B. Electrochim. Acta, 2011, 56: 3147—3152
[86] Xia J B, Yuan C C, Yanagida S. ACS Applied Materials & Interfaces, 2010, 2: 2136—2139
[87] Lee K, Park S W, Ko M J, Kim K, Park N G. Nat. Mater., 2009, 8: 665—671
[88] Gratzel M, Wang M K, Li X, Lin H, Pechy P, Zakeeruddin S M. Dalton Trans., 2009: 10015—10020
[89] Zhang Z P, Zakeeruddin S M, O'Regan B C, Humphry-Baker R, Gratzel M. J. Phys. Chem. B, 2005, 109: 21818—21824
[90] Wang M K, Gratzel C, Moon S J, Humphry-Baker R, Rossier-Iten N, Zakeeruddin S M, Gratzel M. Adv. Funct. Mater., 2009, 19: 2163—2172
[91] Yoshida Y, Tokashiki S, Kubota K, Shiratuchi R, Yamaguchi Y, Kono M, Hayase S. Sol. Energy Mater. Sol. Cells, 2008, 92: 646—650
[92] Kim J, Kim J. Lee M, Nanotechnology, 2010, 21: art. no. 345203
[93] Doh J G, Hong J S, Vittal R, Kang M G, Park N G, Kim K J. Chem. Mater., 2004, 16: 493—497
[94] Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Bogdanoff P, Zaban A. J. Electrochem. Soc., 2003, 150: E293—E298
[95] Cameron P J, Peter L M. J. Phys. Chem. B, 2003, 107: 14394—14400
[96] Xia J B, Masaki N, Jiang K J, Yanagida S. J. Photochem. Photobiol. A, 2007, 188: 120—127
[97] Kuang D B, Wang P, Ito S, Zakeeruddin S M, Gratzel M. J. Am. Chem. Soc., 2006, 128: 7732—7733
[98] Zhang C N, Huang Y, Huo Z P, Chen S H, Dai S Y. J. Phys. Chem. C, 2009, 113: 21779—21783
[99] Fei Z F, Kuang D B, Zhao D B, Klein C, Ang W H, Zakeeruddin S M, Gratzel M, Dyson P J. Inorg. Chem., 2006, 45: 10407—10409
[100] Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T. Sol. Energy Mater. Sol. Cells, 2009, 93: 893—897
[101] Fuke N, Fukui A, Komiya R, Islam A, Chiba Y, Yanagida M, Yamanaka R, Han L Y. Chem. Mater., 2008, 20: 4974—4979
[1] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[2] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[3] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[4] 李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893.
[5] 单雪燕, 王时茂, 孟钢, 方晓东. 钙钛矿太阳电池电子传输层与光吸收层的界面工程[J]. 化学进展, 2019, 31(5): 714-722.
[6] 王露, 霍志鹏, 易锦馨, Ahmed Alsaedi, Tasawar Hayat, 戴松元. 有机-无机杂化钙钛矿太阳电池中的钙钛矿层功能添加剂[J]. 化学进展, 2017, 29(8): 870-878.
[7] 毛庆*, 景维云, 石越. 非线性谱学分析的基本原理及其在电化学研究中的应用[J]. 化学进展, 2017, 29(2/3): 210-215.
[8] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[9] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.
[10] 阙亚萍, 翁坚, 胡林华, 戴松元. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50.
[11] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
[12] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[13] 王桂强, 段彦栋, 张娟, 林原, 禚淑萍. 染料敏化太阳能电池掺杂TiO2纳晶光阳极[J]. 化学进展, 2014, 26(07): 1255-1264.
[14] 孙花飞, 泮廷廷, 胡桂祺, 孙元伟, 王东亭, 张宪玺. 染料敏化太阳电池钌系敏化剂[J]. 化学进展, 2014, 26(04): 609-625.
[15] 桃李, 霍志鹏*, 潘旭, 张昌能, 戴松元*. 有机小分子胶凝剂在准固态染料敏化太阳电池中的应用[J]. 化学进展, 2013, 25(06): 990-998.
阅读次数
全文


摘要

染料敏化太阳电池阻抗特性研究