English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 709-721 前一篇   后一篇

• 综述与评论 •

光敏性BZ反应的时空动力学

路兴杰, 赵跃民, 任林, 杨莹莹, 高庆宇*   

  1. 中国矿业大学化工学院 徐州 221008
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.21073232,50921002)、江苏省自然科学基金项目(No.BK2011006)和江苏省优势学科平台项目资助

Spatiotemporal Dynamics of Photosensitive BZ Reaction

Lu Xingjie, Zhao Yuemin, Ren Lin, Yang Yingying, Gao Qingyu   

  1. College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-05-24 Published:2012-04-10
作为研究非线性时空动力学最理想的化学反应体系之一,三联(2,2'-联吡啶)钌(Ⅱ)(Ru(bpy)32+)为催化剂的Belousov-Zhabotinsky (BZ)振荡反应具有独特的光敏特性并能呈现丰富的时空动力学行为。研究光控BZ反应有助于我们对一系列物理、化学和生命体系中复杂动力学现象的理解。本文综述了不同实验条件下光效应对钌催化BZ反应均相复杂振荡和空间反应扩散化学波的影响, 以及光响应BZ反应与软物质耦合体系的复杂动力学行为,在此基础上介绍光抑制和光诱导反应机理和模型。对光控BZ反应体系存在的问题和发展方向进行了探讨。
The Belousov-Zhabotinsky(BZ) reaction catalyzed by tris(2,2'-bipyridine)ruthenium(Ⅱ), one of the ideal chemical reaction system for studying nonlinear spatiotemporal dynamics, has unique photosensitive properties and can display rich spatiotemporal dynamical behaviors. Achievements of the photosensitive BZ reaction could help us to understand the complex dynamic phenomenon in physical, chemical and living systems. In this paper, the photo-effect on homogenous complex dynamics and reaction-diffusion chemical waves in ruthenium-catalyzed BZ reaction under different experiment conditions, as well as the complex dynamics in coupling system of the ruthenium-catalyzed BZ reaction with soft matter is reviewed. The photosensitive mechanisms and models are summarized. Finally, the existing questions and future directions of the research of photo-controlled BZ reaction systems are discussed.

Contents
1 Introduction
2 Complex spatiotemporal dynamic behavior of tris(2,2'-bipyridine)ruthenium(Ⅱ)-catalyzed BZ reaction
2.1 Homogenous oscillating reactions
2.2 Chemical waves in spatial reaction-diffusion systems
2.3 Ruthenium-catalyzed BZ reaction coupling with soft matter
3 Mechanism of photosensitive ruthenium-catalyzed BZ reaction
3.1 Mechanism of photoinhibition
3.2 Mechanism of photoinduction
4 Models
4.1 Models of photosensitive BZ reaction
4.2 gLSM model of photosensitive BZ reaction in responsive gel
5 Conclusions and outlook

中图分类号: 

()
[1] Hodgkin A L, Huxley A F. J. Physiol., 1952, 117: 500—544
[2] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J. Nature, 1992, 255: 349—351
[3] Imbihl R, Ertl G. Chem. Rev., 1995, 95: 697—737
[4] Belousov B P. Sb. Ref. Radiats. Med., 1958, 145—147
[5] Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics. New York: Oxford University Press, 1998
[6] Wang J C, Zhao J P, Chen Y, Gao Q Y, Wang Y M. J. Phys. Chem. A, 2005, 109: 1374—1381
[7] Borckmans P, De Kepper P, Khokhlov A R, Metens S. Chemomechanical Instabilities in Responsive Materials. Springer, 2009
[8] Desai R C, Kapral R. Dynamics of Self-Organized and Self-Assembled Structures. Cambidge University Press. 2009
[9] Sekiguchi T, Mori Y, Hanazaki I. Chem. Lett., 1993, 22: 1309—1312
[10] Amemiya T, Yamamoto T, Ohmori T, Yamaguchi T. J. Phys. Chem. A, 2002, 106: 612—620
[11] Jinguji M, Ishihara M, Nakazawa T. J. Phys. Chem., 1992, 96: 4279—4281
[12] Showalter K, Noyes R M, Bar-Eli K. J. Phys. Chem., 1978, 69: 2514—2525
[13] Jung P, Hanggi P. Phys. Rev. A, 1991, 44: 8032—8042
[14] Guderian A, Münstera A F, Jingujib M, Krausa M, Schneider F W. Chem. Phys. Lett., 1999, 312: 440—446
[15] Kuhnert L, Krug H J. J. Phys. Chem., 1987, 91: 730—733
[16] Reddy M K R, Nagy-Ungvarai Z, Muller S C. J. Phys. Chem., 1994, 98: 12255—12259
[17] Steinbock O, Muller S C. Physica A, 1992, 188: 61—67
[18] Steinbock O, Muller S C, Zykov V. S. Phys. Rev. E, 1993, 48: 3295—3298
[19] Petrov V, Ouyang Q, Swinney H L. Nature, 1997, 388: 655—657
[20] Amemiya T, Kádár S, Kettunen P, Showalter K. Phys. Rev. Lett., 1996, 77: 3244—3247
[21] Amemiya T, Kettunen P, Kádár S, Yamaguchi T, Showalter K. Chaos, 1998, 8: 872—878
[22] Steinbock O, Zykov V S, Muller S C. Phys. Rev. E, 1993, 48: 3295—3298
[23] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118: 5134—5135
[24] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 47: 6690—6693
[25] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 120: 6792—6795
[26] Kuhnert L. Nature, 1986, 319: 393—394
[27] Kuhnert L, Agladze K I, Krinsky V I. Nature, 1989, 337: 244—247
[28] Steinbock O, Zykov V, Muller S C. Nature, 1993, 366: 322—324
[29] Kádár S, Wang J C, Showalter K. Nature, 1998, 391: 770—772
[30] Gray P, Scott S K. Chemical Oscillation and Instabilities. Oxford: Clarendon Press, 1990
[31] Zhabotinsky A M. Biofizika, 1964, 9: 306—311
[32] Demas J N, Diemente D. J. Chem. Educ., 1973, 50: 357—358
[33] Bolletta F, Balzani V. J. Am. Chem. Soc., 1982, 104: 4250—4251
[34] Zeyer K P, Schneider F W. J. Phys. Chem. A, 1998, 102: 9702—9709
[35] Gaspar V, Bazsa G, Beck M T. Z. Phys. Chem., 1983, 264: 43—48
[36] Delgado J, Zhang Y, Xu B, Epstein I R. J. Phys. Chem. A, 2011, 11: 2208—2215
[37] Kaminaga A, Hanazaki I. J. Phys. Chem. A, 1998, 102: 3307—3314
[38] Kaminaga A, Hanazaki I. Chem. Phys. Lett., 1997, 278: 16—20
[39] Kaminaga A, Mori Y, Hanazaki I. Chem. Phys. Lett., 1997, 279: 339—343
[40] Agladze K, Obata S, Yoshikawa K. Physica D, 1995, 84: 238—245
[41] Matsumura I T, Nakamura T, Mori Y, Hanazaki I. Chem. Lett., 1999, 11: 1237—1238
[42] Huh D S, Choe Y M, Park D Y, Park S Y, Zhao Y S, Kim Y J, Yamaguchi T. Chem. Phys. Lett., 2006, 417: 555—560
[43] Delgado J, Li N, Leda M, Hector O, Ochoa G, Fraden F, Epstein I R. Soft Matter, 2011, 7: 3155—3167
[44] Vanag V K, Epstein I R. Chaos, 2007, 17: art. no. 037110
[45] Nanjundiah V. Biophys. Chem., 1998, 72: 1—8
[46] Bugrim A E, Zhabotinsky A M, Epstein I R. Biophys. J., 1997, 73: 2897—2906
[47] Krug H J, Pohlmann L, Kuhnert L. J. Phys. Chem., 1990, 94: 4862—4866
[48] Steele A J, Tinsley M, Showalter K. Chaos, 2008, 18: art. no. 026108
[49] Yoshikawa K. J. Phys. Chem. A, 2009, 113: 10405—10409
[50] Reddy M K R, Dahlem M, Zykov V S, Muller S C. Chem. Phys. Lett., 1995, 236: 111—116
[51] Nakata S, Matsushita M, Sato T, Suematsu N J, Kitahata H, Amemiya T, Mori Y. J. Phys. Chem. A, 2011, 115: 7406—7412
[52] Kitahata H, Yoshikawa K. J. Phys.: Condens. Matter, 2005, 77: 4239—4248
[53] Winfree A T. Science, 1972, 175: 634—636
[54] Bub G, Shrier A, Glass L. Phys. Rev. Lett., 2002, 88: art. no. 058101
[55] Petrov V, Li G, Ouyang Q, Swinney H L. J. Phys. Chem., 1996, 100: 18992—18996
[56] Aliev R R, Amemiya T, Yamaguchi T. Chem. Phys. Lett., 1996, 257: 552—556
[57] Braune M, Engel H. Chem. Phys. Lett., 1993, 204: 257—264
[58] Braune M, Engel H. Chem. Phys. Lett., 1993, 211: 534—540
[59] Braune M, Schrader A, Engel H. Chem. Phys. Lett., 1994, 222: 358—362
[60] Brandtstdter H, Braune M, Schebesch I, Engel H. Chem. Phys. Lett., 2000, 323: 145—154
[61] Agladze K, Voignier V, Hamm E, Plaza F, Krinsky V. J. Phys. Chem., 1996, 100: 18764—18769
[62] Martinez K, Lin A L, Kharrazian R. Physica D: Nonlinear Phenomena, 2002, 168: 1—9
[63] Markus M, Nagy U Z, Hess B. Science, 1992, 257: 225—227
[64] Cassidy I, Muller S C. Phys. Rev. E, 2006, 74: art. no. 026206
[65] Nukata S, Morishima S, Kitahata H. J. Phys. Chem. A, 2006, 110: 3633—3637
[66] Matsushita M, Nakata S, Kitahata H. J. Phys. Chem. A, 2007, 111: 5833—5838
[67] Tanaka M, Nagahara H, Kitahata H, Krinsky V, Agladze K, Yoshikawa K. Phys. Rev. E, 2007, 76: art. no. 016205
[68] Bradley M, David J W, Simpson A, Lin A L. Phys. Rev., 2007, 76: art. no. 026213
[69] Lin A L, Bertram M, Martinez K, Swinney H L. Phys. Rev. Lett., 2000, 84: 4240—4243
[70] Lin A L, Hagberg A, Ardelea A, Bertram M, Swinney H L, Meron E. Phys. Rev. E, 2000, 62: 3790—3798
[71] Marts B, Martinez K, Lin A L. Phys. Rev. E, 2004, 69: art. no. 066217
[72] Nakata S, Kashima K, Kitahata H, Mori Y. J. Phys. Chem. A, 2010, 114: 9124—9129
[73] Samoilov M, Arkin A, Ross J. J. Phys. Chem. A, 2002, 106: 10205—10221
[74] Ichino T, Fujio K, Matsushita M, Nakata S. J. Phys. Chem. A, 2009, 113: 2034—2038
[75] Nakata S, Morishima S, Ichino T, Kitahata H. J. Phys. Chem. A, 2006, 110: 13475—13478
[76] Sendia-Nadal I, Gómez-Gesteira M, Pérez-Muuzuri V. Phys. Rev. E, 1997, 56: 6298—6301
[77] Jinguji M, Ishihara M, Nakazawa T, Nagashima N. Physica D: Nonlinear Phenomena, 1995, 84: 246—252
[78] Agladze K, Tóth A, Ichino T, Yoshikawa T. J. Phys. Chem. A, 2000, 104: 6677—6680
[79] Toth R, Stone C, Adamatzky A. Chaos, Solitons & Fractals, 2009, 41: 1605—1615
[80] Costello B D L, Toth R. Phys. Rev. E, 2009, 79: art no. 026114
[81] Igarashi Y, Gorecki J, Gorecka J N. Acta Phys. Polo. B, 2008, 39: 1187—1197
[82] Agladze K, Aliev R R, Yamaguchi T, Yoshikawa K. J. Phys. Chem., 1996, 100: 13895—13897
[83] Gorecka J N, Gorecki J, Igarashi Y. J. Phys. Chem. A, 2007, 111: 885—889
[84] Ichino T, Fujio K, Matsushita M, Nakata S. J. Phys. Chem. A, 2009, 113: 2304—2308
[85] Gorecki J, Yoshikawa K, Igarashi Y. J. Phys. Chem. A, 2003, 107: 1664—1669
[86] Kaminaga A, Vladimir K, Epstein I R. Angew. Chem. Int. Ed., 2006, 45: 3087—3089
[87] Vanag V K, Epstein I R. Phys. Rev. Lett., 2001, 87: 228301—228305
[88] Mironov S, Vinson M, Mulvey S, Pertsov A. J. Phys. Chem., 1996, 100: 1975—1983
[89] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J. Nature, 1992, 355: 349—351
[90] Gorelova A, Bures J. J. Neurobiol., 1983, 14: 353—363
[91] Huh D S, Kang J K, Kim Y J, Yoshida R. Poly. Bull., 2005, 54: 215—223
[92] Maeda S, Hara Y, Yoshida R, Hashimoto S. Int. J. Mol, Sci., 2010, 11: 52—66
[93] Miyakawa K, Sakamoto F, Yoshida R, Kokufuta E, Yamaguchi T. Phys. Rev. E, 2000, 62: 793—798
[94] Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19: 3480—3484
[95] Yoshida R. Sensors, 2010, 10: 1810—1822
[96] Murase Y, Hidaka M, Yoshida R. Sensors and Actuators B, 2010, 149: 272—283
[97] Shinohara S I, Seki T, Sakai T, Yoshida R, Takeoka Y. Angewandte Chemie, 2008, 10: 9179—9183
[98] Field R J, Noyes R M, Koro E. J. Am. Chem. Soc., 1972, 94: 8649—8664
[99] Toth R, Taylor A F. Prog. React. Kinet. Mech., 2006, 31: 59—115
[100] Reddy M K R, Szlavik Z, Nagy-Ungvarai Z, Muller S C. J. Phys. Chem., 1995, 99: 15081—15085
[101] Hanazaki I. J. Phys. Chem., 1992, 96: 5652—5657
[102] Srivastava P K, Mori Y, Hanazaki I. Chem. Phys. Lett., 1992, 190: 279—284
[103] Zaikin A N, Zhabotinsky A M. Biological and Biochemical Oscillators. New York: Academic Press, 1973. 81—85
[104] Yamaguchi T, Shimamoto Y, Amemiya T, Yoshimoto M, Ohmori T, Nakaiwa M, Akiya T, Sato M, Matsumura- Inoue T. Chem. Phys. Lett., 1996, 259: 219—224
[105] Kádár S, Amemiya T, Showalter K. J. Phys. Chem. A, 1997, 101: 8200—8206
[106] Vanag V K, Zhabotinsky A M, Epstein I R. J. Phys. Chem. A, 2000, 104: 8207—8215
[107] Treindl L, Knudsen D, Nakamura T, Inoue T M, Jrgensen K B, Ruoff P. J. Phys. Chem. A, 2000, 104: 10783—10788
[108] Hanazaki I, Kaminaga A, Mori Y, Rabai G. Ach-Models in Chemistry, 1998, 135: 257—268
[109] Field R J, Noyes R M. J. Chem. Phys., 1974, 60: 1877—1884
[110] Bao W, Li Z, Zhou L Q, Gao Z. Phys. Rev. E, 2009, 79: art. no. 016214
[111] Kheowan O U, Chan C K, Zykov V S, Rangsiman O, Müller S C. Phys. Rev. Lett., 2001, 86: 2170—2173
[112] Zhou L Q, Cassidy I, Muller S C. Phys. Rev. Lett., 2005, 94: 128301—128304
[113] Amemiya T, Ohmori T, Yamaguchi T. J. Phys. Chem. A, 2000, 104: 336—344
[114] Amemiya T, Ohmori T, Nakaiwa M, Yamaguchi T. J. Phys. Chem. A, 1998, 102: 4537—4542
[115] Rovinsky A, Zhabotinsky A M. J. Phys. Chem., 1984, 88: 6081—6084
[116] Zhabotinsky A M, Buchholtz F, Kiyatkin A B, Epstein I R. J. Phys. Chem., 1993, 97: 7578—7584
[117] Yashin V V, Balazs A C. J. Chem. Phys., 2007, 126: 124707—124724
[118] Yashin V V, Balazs A C. Macromolecules, 2006, 39: 2024—2026
[119] Kuksenok O, Yashin V V, Balazs A C. Soft Matter, 2007, 3: 1138—1144
[120] Yashin V V, Vliet K V, Balazs A C. Phys. Rev. E, 2009, 79: art. no. 046214
[121] Yashin V V, Vliet K V, Balazs A C. Phys. Rev. E, 2009, 79: art. no. 046214
[122] Yashin V V, Kuksenok O, Balazs A C. J. Phys. Chem. B, 2010, 114: 6316—6322
[123] Dayal P, Kuksenok O, Balazs A C. Langmuir, 2009, 25: 4298—4301
[124] Chen I C, Kuksenok O, Yashin V V, Moslin R M, Balazs A C, Vliet K J V. Soft Matter, 2011, 7: 3141—3146
[125] Vanag V K. Russ. J. Gene. Chem., 2011, 81: 181—190
[126] Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. Science, 2008, 319: 1370—1374
[127] Beebe D J, Moore J S, Bauer J M, Qing Y, Liu R H, Devadoss C, Jo B H. Nature, 2000, 404: 588—590
[128] Ichino T, Asahi T, Kitahata H, Magome N, Agladze K, Yoshikawa K. J. Phys. Chem. C, 2008, 112: 3032—3035
[1] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[2] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[3] 周宏伟, 丁小斌. Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能[J]. 化学进展, 2016, 28(1): 111-120.
[4] 袁玲, 刘洋, 杨涛, 刘海苗, 高庆宇. 硫化学反应体系中的振荡与斑图形成[J]. 化学进展, 2014, 26(04): 529-544.
[5] 周宏伟, 梁恩湘, 郑朝晖, 丁小斌, 彭宇行. 基于Belousov-Zhabotinsky自振荡反应的智能高分子[J]. 化学进展, 2011, 23(11): 2368-2376.
[6] 王俊,刘志宏,蔡汝秀,林智信. 生物时空振荡分析法*[J]. 化学进展, 2006, 18(01): 100-106.
[7] 褚效中,贺占博. 化学振荡研究领域的数学方法与程序软件*[J]. 化学进展, 2004, 16(01): 42-.
[8] 翟俊红,贺占博. 可逆型化学振荡器[J]. 化学进展, 2003, 15(02): 92-.
[9] 李冬梅,贺占博. Marangoni效应与液膜振荡*[J]. 化学进展, 2003, 15(01): 1-.
[10] 彭必先,崔卫东,赵翔. 银团簇的形成及性质研究*[J]. 化学进展, 1998, 10(04): 362-.
[11] 高庆宇,蔡遵生,赵学庄. 非线性化学反应动力学*[J]. 化学进展, 1997, 9(01): 59-.
[12] 李如生,万荣. 非平衡非线性化学[J]. 化学进展, 1996, 8(01): 17-.
阅读次数
全文


摘要

光敏性BZ反应的时空动力学