English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 696-708 前一篇   后一篇

• 综述与评论 •

仿生超疏水性表面的最新应用研究

陈钰1,3, 徐建生1, 郭志光2,3*   

  1. 1. 武汉工程大学机电工程学院 武汉 430073;
    2. 湖北大学功能材料绿色制备与 应用教育部重点实验室 武汉 430062;
    3. 中国科学院兰州化学物理研究所固体润滑国家重点实验室 兰州 730000
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.50902047,31070155,11172301)和中国科学院“百人计划”项目资助

Recent Advances in Application of Biomimetic Superhydrophobic Surfaces

Chen Yu1,3, Xu Jiansheng1, Guo Zhiguang2,3*   

  1. 1. School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
    2. Key Laboratory of Green Preparation and Application for Materials, Ministry of Education, Hubei University, Wuhan 430062, China;
    3. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
近年来,除了荷叶表面,更多具有特殊润湿性的动植物表面同样受到关注。通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。该综述简单地介绍了表面润湿的基本模型和最新的几种特殊表面结构,重点介绍近几年仿生超疏水表面应用的最新研究进展,主要包括超疏水表面在超疏油、表面润湿转换、外界刺激下的润湿行为调控、微流体、抗结冰等方面的应用。最后,对超疏水表面研究的未来发展进行了展望。
In the recent decades, superhydrophobic surfaces have attracted increasing attention in both fundamental research and practical applications due to their water-repellent and self-cleaning properties, inspired from plant leaves in nature, such as lotus leaf with special wettability and fine micro-structures on their surfaces. In this feature article, we review two classical wettability models and mainly focus on the development of the potential applications of biomimetic superhydrophobic surfaces in the last three years, including super-oil-repellent surfaces, micro-fluidics, wetting conversion, smart surfaces, and anti-icing. Finally, the promising applications of biomimetic superhydrophobic surfaces in the future are proposed.

Contents
1 Introduction
2 Basic principles of solid surface wettability
3 Applications of bio-inspired superhydrophobic surfaces
3.1 Super-oil-repellent surfaces
3.2 Superhydrophobic surface with wetting conversion
3.3 Solid wettability response to external conditions
3.4 Microfluidics for superhydrophobic surfaces
3.5 Anti-icing for superhydrophobic surfaces
3.6 Other applications
4. Conclusions and outlook

中图分类号: 

()
[1] Barthlott W, Neinhuis C. Planta, 1997, 202: 1—8
[2] Guo Z G, Liu W M. Plant Science, 2007, 172: 1103—1112
[3] Guo Z G, Liu W M, Su B L. J. Colloid Interface Sci., 2011, 353: 335—355
[4] Hu D L, Chan B, Bush J W M. Nature, 2003, 424: 663—666
[5] Gao X F, Jiang L. Nature, 2004, 432: 36—36
[6] Zheng Y M, Gao X F, Jiang L. Soft Matter, 2007, 3: 178—182
[7] Gao X F, Yan X, Yao X, Xu L, Zhang K, Zhang J H, Yang B, Jiang L. Adv. Mater., 2007, 19: 2213—2217
[8] Lee W, Jin M K, Yoo W C, Lee J K. Langmuir, 2004, 20: 7665—7669
[9] Parker A R, Lawrence C R. Nature, 2001, 414: 33—34
[10] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463: 640—643
[11] Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L. Adv. Mater., 2009, 21: 665—669
[12] Zhang Y B, Chen Y, Shi L, Li J, Guo Z G. J. Mater. Chem., 2012, 22: 799—815
[13] Guo Z G, Fang J, Hao J C, Liang Y M, Liu W M. ChemPhysChem, 2006, 7: 1674—1677
[14] Guo Z G, Zhou F, Hao J C, Liu W M. J. Am. Chem. Soc., 2005, 127: 15670—15671
[15] Guo Z G, Liu W M, Su B L. Nanotechnology, 2008, 19: art. no. 445608
[16] Guo Z G, Liu W M. Applied Physics Letters, 2010, 97: art. no. 243701
[17] Young T. Philos. Trans. R. Soc., 1805, 95: 65—87
[18] Wenzel R N. Indust. Eng. Chem., 1936, 28: 988—994
[19] Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546—551
[20] Bico J, Thiele U, Quéré D. Colloids Surf. A, 2002, 206: 41—46
[21] Quéré D, Lafuma A. Nat. Mater., 2003, 2: 457—460
[22] Bhushan B, Jung Y C. J. Phys. Condens. Matter., 2008, 20: art. no. 225010
[23] Nosonovsky M, Bhushan B. Ultramicroscopy, 2007, 107: 969—979
[24] He B, Patankar N A, Lee J. Langmuir, 2003, 19: 4999—5003
[25] Nosonovsky M, Bhushan B. Nano Lett., 2007, 7: 2633—2637
[26] Patankar N A. Langmuir, 2004, 20: 7097—7102
[27] Bormashenko E, Pogreb R, Whyman G, Erlich M. Langmuir, 2007, 23: 6501—6503
[28] Guo Z G, Su B L. Appl. Phys. Lett., 2011, 99: art. no. 082106
[29] Lafuma A, Quéré D. Nat. Mater., 2003, 2: 457—460
[30] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C. Proc. Natl. Acad. Sci. USA, 2009, 106: 8435—8440
[31] Gleiche M, Chi L F, Fuchs H. Nature, 2000, 403: 173—175
[32] ner D, McCarthy T J. Langmuir, 2000, 16: 7777—7782
[33] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Langmuir, 2002, 18: 5818—5822
[34] Cao L L, Hu H H, Gao D. Langmuir, 2007, 23: 4310—4314
[35] Marmur A. Langmuir, 2008, 24: 7573—7579
[36] Cao L L, Price T P, Weiss M, Gao D. Langmuir, 2008, 24: 1640—1643
[37] Chhatre S S, Choi W, Tuteja A, Park K C, Mabry J M, Mckinley G H, Cohen R E. Langmuir, 2010, 26: 4027—4035
[38] Li H J, Wang X B, Song Y L, Liu Y Q, Li Q S, Jiang L, Zhu D B. Angew. Chem., 2001, 113: 1793—1796
[39] Xie Q D, Xu J, Feng L, Jiang L, Tang W H, Luo X D, Han C C. Adv. Mater., 2004, 16: 302—305
[40] Feng L, Jiang L. Adv. Mater., 2006, 18: 3063—3078
[41] Zimmermann J, Rabe M, Artus G J R, Seeger S. Soft Matter, 2008, 4: 450—452
[42] Darmanin T, Guittard F. J. Am. Chem. Soc., 2009, 131: 7928—7933
[43] Steele A, Bayer I, Loth E. Nano Lett., 2009, 9: 501—505
[44] Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. Science, 2007, 318: 1618—1622
[45] Tuteja A, Choi W, Mabry J M, McKinley G H, Cohen R E. Proc. Natl. Acad. Sci. USA, 2008, 105: 18200—18205
[46] Choi W, Tuteja A, Chhatre S, Mabry J M, Cohen R E, McKinley G H. Adv. Mater., 2009, 21: 2190—2195
[47] Wu W C, Wang X L, Wang D A, Chen M, Zhou F, Liu W M, Xue Q J. Chem. Commun., 2009, 9: 1043—1045
[48] Zhang J P, Seeger S. Angew. Chem. Int. Ed., 2011, 50: 6652—6656
[49] Meng H F, Wang S T, Xi J M, Tang Z Y, Jiang L. J. Phys. Chem. C, 2008, 112: 11454—11458
[50] Feng L, Zhang Y N, Xi J M, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24: 4114—4119
[51] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Nature, 2000, 405: 681—685
[52] Hansen W R, Autumn K. Proc. Natl. Acad. Sci. USA, 2005, 102: 385—389
[53] Northen M T, Greiner C, Arzt E, Turner K L. Adv. Mater., 2008, 20: 3905—3909
[54] Qu L T, Dai L M, Stone M, Xia Z H, Wang Z L. Science, 2008, 322: 238—242
[55] Chan E P, Smith E J, Hayward R C, Crosby A J. Adv. Mater., 2008, 20: 711—716
[56] Reddy S, Arzt E, del Campon A. Adv. Mater., 2007, 19: 3833—3837
[57] Sun T L, Feng L, Gao X F, Jiang L. Acc. Chem. Res., 2005, 38: 644—652
[58] Bhushan B, Nosonovsky M, Jung Y C. J. R. Soc. Interface, 2007, 4: 643—648
[59] Lai Y K, Lin C J, Huang J Y, Zhuang H F, Sun L, Nguyen T. Langmuir, 2008, 24: 3867—3873
[60] Zhao N, Xie Q D, Kuang X, Wang S Q, Li Y F, Lu X Y, Tan S X, Shen J, Zhang X L, Xu J, Han C C. Adv. Funct. Mater., 2007, 17: 2739—2745
[61] Ishii D, Yabu H, Shimomura M. Chem. Mater., 2009, 21: 1799—1801
[62] Huang X J, Kin D H, Im M, Lee J H, Yoon J B, Chio Y K. Small, 2009, 5: 90—94
[63] Di Mundo R, Palumbo F, D'Agostino R. Langmuir, 2008, 24: 5044—5051
[64] Tserepi A D, Schofield W C E, Roucoules V, Badyal J P S. Langmuir, 2003, 19: 3432—3438
[65] Yao Y, Dong X, Hong S, Ge H, Han C C. Macrmol. Rapid Commun., 2006, 27: 1627—1631
[66] Lafuma A, Quéré D. Nat. Mater., 2003, 2: 457—460
[67] Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B. J. Am. Chem. Soc., 2004, 126: 62—63
[68] Xu L B, Chen W, Mulchandani A, Yan Y S. Angew. Chem. Int. Ed., 2005, 44: 6009—6012
[69] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43: 357—360
[70] Zhang J L, Lu X Y, Huang W H, Han Y C. Macromol. Rapid Commun., 2005, 26: 477—480
[71] Zhao B, Brittain W J. Macromolecules, 2000, 33: 8813—8820
[72] Lai Y K, Gao X F, Zhuang H F, Lin C J, Jiang L. Adv. Mater., 2009, 21: 3799—3803
[73] Krupenkin T N, Taylor J A, Schneider T M, Yang S. Langmuir, 2004, 20: 3824—3827
[74] Krupenkin T, Taylor J A, Kolodner P, Hodes M. Bell Labs Tech. J., 2005, 10: 161—170
[75] Dhindsa M S, Smith N R, Heikenfeld J, Rack P D, Fowlkes J D, Doktycz M J, Melechko A V, Simpson M L. Langmuir, 2006, 22: 9030—9034
[76] Tian D L, Chen Q W, Nie F Q, Xu J J, Song Y L, Jiang L. Adv. Mater., 2009, 21: 3744—3749
[77] Ahuja A, Taylor J A, Lifton V, Sidorenko A A, Salamon T R, Lobaton E J, Kolodner P, Krupenkin T N. Langmuir, 2008, 24: 9—14
[78] Kim T I, Tahk D, Lee H H. Langmuir, 2009, 25: 6576—6579
[79] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C. Proc. Natl. Acad. Sci. USA, 2009, 106: 8435—8440
[80] Liu G M, Fu L, Rode A V, Graig V S J. Langmuir, 2011, 27: 2595—2600
[81] Liu M J, Nie F Q, Wei Z X, Song Y L, Jiang L. Langmuir, 2010, 26: 3993—3997
[82] Lin B C, Long Z C, Liu X, Qin J H. Adv. Mater., DOI: 10.1002/biot. 200600104
[83] Dittrich P S, Manz A. Nature Rev. Drug Discov., 2006, 5: 210—218
[84] Lee C C, Sui G D, Elizarov A, Shu C Y J, Shin Y S, Dooley A N, Huang J, Daridon A, Wyatt P, Stout D, Kolb H C, Witte O N, Satyamurthy N, Heath J R, Phelps M E, Quake S R, Tseng H R. Science, 2005, 310: 1793—1796
[85] Matosevic S, Szita N, Baganz F. Adv. Mater., 2011, 86: 325—334
[86] Cooney C, Chen C Y, Emerling M, Nadim A, Sterling J D. Microfluid. Nanofluid., 2006, 2: 435—446
[87] Bormashenko E, Bormashenko Y. Langmuir, 2011, 27: 3266—3270
[88] Shirtcliffe N J, McHale G, Newton M I. Langmuir, 2009, 25: 14121—14128
[89] Jokinen V, Sainiemi L, Franssila S. Adv. Mater., 2008, 20: 3453—3465
[90] Mertaniemi H, Jokinen V, Sainiemi L, Franssila S, Marmur A, Ikkala O, Ras R H A. Adv. Mater., 2011, 26: 2911—2914
[91] Jafari R, Menini R, Farzaneh M. Appl. Surf. Sci., 2010, 257: 1540—1543
[92] Menini R, Farzaneh M. Surf. Coat. Technol., 2009, 203: 1941—1946
[93] Ryerson C C. Cold Reg. Sci. Technol., 2011, 65: 97—110
[94] He M, Wang J X, Li H L, Jin X L, Wang J J, Liu B Q, Song Y L. Soft Matter, 2010, 6: 2396—2399
[95] Wang F C, Li C R, Lv Y Z, Lv F C, Du Y F. Cold Reg. Sci. Technol., 2010, 62: 29—33
[96] Saito H, Takai K, Yamauchi G. Surf. Coat. Int., 1997, 80: 168—171
[97] Varanasi K K, Deng T, Smith J D, Hsu M, Bhate N. Applied Physics Letters, 2010, 97: art. no. 234102
[98] Cao L L, Jones A K, Sikka V K, Wu J Z, Gao D. Langmuir, 2009, 25: 12444—12448
[99] Farhadi S, Farzaneh M, Kulinich S A. Applied Surface Science, 2011, 257: 6264—6269
[100] Menini R, Farzaneh M. Surface & Coatings Technology, 2009, 203: 1941—1946
[101] Tsujii K, Yamamoto K T, Onda T, Shibuichi S. Angew. Chem. Int. Ed., 1997, 36: 1011—1012
[102] Feng X, Jiang L. Adv. Mater., 2006, 18: 3063—3078
[103] Shibuichi S, Onda T, Satoh N, Tsujii K. Langmuir, 1996, 12: 2125—2127
[104] Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43: 2012—2014
[105] Crick C R, Parkin I P. Chem. -Eur. J., 2010, 16: 3568—3588
[106] Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. J. Mater. Chem., 2008, 18: 621—633
[107] Pan Q M, Wang M, Wang H B. Appl. Surf. Sci., 2008, 254: 6002—6006
[108] Jin M H, Wang J, Yao X, Liao M Y, Zhao Y, Jiang L. Adv. Mater., 2011, 23: 2861—2864
[109] Garnett E, Yang P. Nano Lett., 2010, 10: 1082—1087
[110] Zhu J, Hsu C M, Yu Z, Fan S, Cui Y. Nano Lett., 2010, 10: 1979—1984
[111] Clapham P B, Hutley M C. Nature, 1973, 244: 281—282
[112] Lee C, Bae S Y, Mobasser S, Manohara H. Nano Lett., 2005, 5: 2438—2442
[113] Koynov S, Brandt M S, Stutzmann M. Appl. Phys. Lett., 2006, 88: art. no. 203107
[114] Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M, Lin S Y, Liu W, Smart J A. Nat. Photonics, 2007, 1: 176—179
[115] Xiu Y H, Zhu L B, Hess D W, Wong C P. Nano Letter, 2007, 7: 3388—3393
[116] Sun C H, Min W L, Linn N C, Jiang P, Jiang B. Appl. Phys. Lett., 2007, 91: art. no. 231105
[117] Sainiemi L, Jokinen V, Shah A, Shpak M, Aura S, Suvanto P, Franssila S. Adv. Mater., 2011, 23: 122—126
[118] Sainiemi L, Keskinen H, Aromaa M, Luosujrvi L, Grigoras K, Kotiaho T, Mkel J M, Franssila S. Nanotechnology, 2007, 18: art. no. 505303
[119] Lo H C, Das D, Hwang J S, Chen K H. Appl. Phys. Lett., 2003, 18: art. no. 1420
[120] Ting C J, Huang M C, Tsai H Y, Chou C P, Fu C C. Nanotechnology, 2008, 19: art. no. 205301
[121] Parker A R, Lawrence C R. Nature, 2001, 414: 33—34
[122] Zhai L, Berg M C, Cebeci F C, Kim Y, Milwid J M, Rubner M F, Cohen R E. Nano Lett., 2006, 6: 1213—1217
[123] Dorrer C, Ruhe J. Langmuir, 2008, 24: 6154—6158
[124] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463: 640—643
[125] Kulinich S A, Farhadi S, Nose K, Du X W. Langmuir, 2011, 27: 25—29
[126] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4: 7699—7707
[127] Tourkine P, Le Merrer M, Quéré D. Langmuir, 2009, 25: 7214—7216
[128] He M, Wang J X, Li H L, Jin X L, Wang J J, Liu B Q, Song Y L. Soft Matter, 2010, 6: 2396—2399
[129] Bettinger C J, Langer R, Borenstein J T. Angew. Chem. Int. Ed., 2009, 48: 5406—5415
[130] Schweikl H, Muller R, Englert C, Hiller K A, Kujat R, Nerlich M, Schmalz G. J. Mater. Sci.: Mater. Med., 2007, 18: 1895—1905
[131] Marklein R A, Burdick J A. Adv. Mater., 2010, 22: 175—189
[132] Alves N M, Pashkuleva I H, Reis R L, Mano J F. Small, 2010, 6: 2208—2220
[133] Sun T L, Tan H, Han D, Fu Q, Jiang L. Small, 2005, 1: 959—963
[134] Oliveira S M, Song W L, Alves N M, Mano J F. Soft Matter, Doi: 10.1039/c1sm05943b
[135] Mundo R D, Nardulli M, Milella A, Favia P, D'Agostino R, Gristina R. Langmuir, 2011, 27: 4914—4921
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[3] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[4] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[5] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[6] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[7] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[8] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[9] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[10] 詹晓力, 金碧玉, 张庆华*, 陈丰秋. 多功能超润湿材料的设计制备与应用[J]. 化学进展, 2018, 30(1): 87-100.
[11] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[12] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[13] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[14] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[15] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.