English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 686-695 前一篇   后一篇

• 综述与评论 •

离子液体参与构建的胶束

赵学艳1*, 郑利强2, 曹桂荣1, 肖瑞杰1   

  1. 1. 防灾科技学院 三河 065201;
    2. 山东大学 胶体与界面化学教育部重点实验室 济南 250100
  • 收稿日期:2011-09-01 修回日期:2011-11-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    中国地震局教师科研基金项目(No.20110123)资助

Micelles Based on Ionic Liquids

Zhao Xueyan1*, Zheng Liqiang2, Cao Guirong1, Xiao Ruijie1   

  1. 1. Institute of Disaster Prevention, Sanhe 065201, China;
    2. Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
  • Received:2011-09-01 Revised:2011-11-01 Online:2012-05-24 Published:2012-04-10
离子液体参与构建的有序组合体,以其独特的物理化学性质及在众多领域的应用潜能而引起广泛关注。本文结合我们的研究工作,对离子液体参与构建的胶束体系的主要研究成果进行了综述,重点介绍了传统表面活性剂在离子液体中胶束的形成、表面活性离子液体在水溶液中的聚集行为、离子液体作为添加剂对传统表面活性剂胶束的影响。在此基础上,归纳了部分体系胶束形成的机理和规律,并展望了离子液体构建的胶束体系研究和发展的方向。
The ordered molecular aggregates based on ionic liquids (ILs) have attracted increasing interest due to their unique physicochemical properties and potential applications in various areas. Combining with our work, the recent progress in the micelle formation based on ILs is summarized. The aggregation of traditional surfactants in ILs, self-organization of surface-active ILs in aqueous solutions, as well as the effect of ILs on micelles formed by traditional surfactants are reviewed emphatically. Based on these studies, the mechanisms and regularities of micellization for some systems are proposed, and the trend for future research is prospected.

Contents
1 Introduction
2 ILs as solvents
2.1 Micelle formation of cationic surfactants in ILs
2.2 Micelle formation of anionic surfactants in ILs
2.3 Micelle formation of nonionic surfactants in ILs
2.4 Micelle formation of amphiphilic copolymers in ILs
3 ILs as surface-active agents
3.1 Micelle formation of common ILs in aqueous solution
3.2 Micelle formation of common ILs in non-aqueous solution
3.3 Micelle formation of functional ILs in aqueous solution
4 Effect of ILs on micelles formed by traditional surfactants
4.1 ILs as co-surfactants
4.2 ILs as salts
5 Prospects

中图分类号: 

()
[1] 黄强(Huang Q), 王丽丽(Wang L L), 郑保忠(Zheng B Z), 隆泉(Long Q). 化学进展(Progress in Chemistry), 2009, 21(9): 1782—1791
[2] Zhao H, Xia S, Ma P. J. Chem. Technol. Biotechnol., 2005, 80(10): 1089—1096
[3] Silvester D S, Ward K R, Aldous L, Hardacre C, Compton R G. J. Electroanal. Chem., 2008, 618(1/2): 53—60
[4] Bloom H, Reinsborough V C. Aust. J. Chem., 1968, 21(6): 1525—1530
[5] Dong B, Zhao X Y, Zheng L Q, Zhang J, Li N, Inoue T. Colloids Surf. A, 2008, 317(1/3): 666—672
[6] Gao Y A, Zhao X Y, Dong B, Zheng L Q, Li N, Zhang S H. J. Phys. Chem. B, 2006, 110(17): 8576—8581
[7] Li N, Zhang S H, Zheng L Q, Gao Y A, Yu L. Langmuir, 2008, 24(7): 2973—2976
[8] Gao Y A, Li N, Zheng L Q, Bai X T, Yu L, Zhao X Y, Zhang J, Zhao M W, Li Z. J. Phys. Chem. B, 2007, 111(10): 2506—2513
[9] Bloom H, Reinsborough V C. Aust. J. Chem., 1969, 22(3): 519—525
[10] Evans D F, Yamauchi A, Roman R, Casassa E Z. J. Colloid Interf. Sci., 1982, 88 (1): 89—96
[11] Velasco S B, Turmine M, Caprio D D, Letellier P. Colloids Surf. A, 2006, 275(1/3): 50—54
[12] Li N, Zhang S H, Zheng L Q, Wu J P, Li X W, Yu L. J. Phys. Chem. B, 2008, 112(39): 12453—12460
[13] Li N, Zhang S H, Zheng L Q, Inoue T. Langmuir, 2009, 25(18): 10473—10482
[14] Anderson J L, Pino V, Hagberg E C, Sheares V V, Armstrong D W. Chem. Commun., 2003, (19): 2444—2445
[15] Moniruzzaman M, Kamiya N, Nakashima K, Goto M. ChemPhysChem, 2008, 9(5): 689—692
[16] Fletcher K A, Pandey S. Langmuir, 2004, 20(1): 33—36
[17] Wu J P, Li N, Zheng L Q, Li X W, Gao Y A, Inoue T. Langmuir, 2008, 24(17): 9314—9322
[18] Patrascu C, Gauffre F, Nallet F, Bordes R, Oberdisse J, de Lauth-Viguerie N, Mingotaud C. ChemPhysChem, 2006, 7 (1): 99—101
[19] Inoue T. J. Colloid Interf. Sci., 2009, 337(1): 240—246
[20] Inoue T, Yamakawa H. J. Colloid Interf. Sci., 2011, 356(2): 798—802
[21] Misono T, Sakai H, Sakai K, Abe M, Inoue T. J. Colloid Interf. Sci., 2011, 358(2): 527—533
[22] Inoue T, Kawashima K, Miyagawa Y. J. Colloid Interf. Sci., 2011, 363(1): 295—300
[23] Berthod A, Tomer S, Dorsey J G. Talanta, 2001, 55(1): 69—83
[24] He Y, Li Z, Simone P M, Lodge T P. J. Am. Chem. Soc., 2006, 128(8): 2745—2750
[25] Simone P M, Lodge T P. Macromolecules, 2008, 41(5): 1753—1759
[26] Won Y Y, Davis H T, Bates F S. Macromolecules, 2003, 36(3): 953—955
[27] Jain S, Bates F S. Macromolecules, 2004, 37(4): 1511—1523
[28] He Y, Lodge T P. J. Am. Chem. Soc., 2006, 128(39): 12666—12667
[29] Bai Z, Lodge T P. J. Phys. Chem. B, 2009, 113(43): 14151—14157
[30] Chechik V, Zhao M, Crooks R M. J. Am. Chem. Soc., 1999, 121(20): 4910—4911
[31] Li D, Zhao B. Langmuir, 2007, 23(4): 2208—2217
[32] Bai Z, He Y, Lodge T P. Langmuir, 2008, 24(10): 5284—5290
[33] Guerrero-Sanchez C, Gohy J F, D'Haese C, Thijs H, Hoogenboom R, Schubert U S. Chem. Commun., 2008, 2753—2755
[34] Bai Z, Lodge T P. Langmuir, 2010, 26(11): 8887—8892
[35] Bai Z, Lodge T P. J. Am. Chem. Soc., 2010, 132(45): 16265—16270
[36] Alexandridis P, Nivaggioli T, Hatton T A. Langmuir, 1995, 11(5): 1468—1476
[37] Alexandridis P, Holzwarth J F, Hatton T A. Macromolecules, 1994, 27(9): 2414—2425
[38] Zhao X Y, Xu J, Zheng L Q, Li X W. Colloids Surf. A, 2007, 307(1/3): 100—107
[39] Zhang S H, Li N, Zheng L Q, Li X W, Gao Y A, Yu L. J. Phys. Chem. B, 2008, 112 (33): 10228—10233
[40] Lee H N, Bai Z, Newell N, Lodge T P. Macromolecules, 2010, 43(22): 9522—9528
[41] Bowers J, Butts C P, Martin P J, Vergara-Gutierrez M C. Langmuir, 2004, 20(6): 2191—2198
[42] Miskolczy Z, Sebok-Nagy K, Biczok L, Gokturk S. Chem. Phys. Lett., 2004, 400(4/6): 296—300
[43] Jungnickel C, uczak J, Ranke J, Fernández J F, Müller A, Thfiming J. Colloids Surf. A, 2008, 316(1/3): 278—284
[44] Cornellas A, Perez L, Comelles F, RibosaI, Manresa A, Garcia M T. J. Colloid Interf. Sci., 2011, 355(1): 164—171
[45] Galgano P D, Seoud O A E. J. Colloid Interf. Sci., 2011, 361(1): 186—194
[46] Dong B, Li N, Zheng L Q, Yu L, Inoue T. Langmuir, 2007, 23(8): 4178—4182
[47] Dong B, Zhang J, Zheng L Q, Wang S Q, Li X W, Inoue T. J. Colloid Interf. Sci., 2008, 319(1): 338—343
[48] Inoue T, Ebina H, Dong B, Zheng L Q. J. Colloid Interf. Sci., 2007, 314 (1): 236—241
[49] Tariq M, Podgorek A, Ferguson J L, Lopes A, Gomes M F C, Pádua A A H, Rebelo L P N, Lopes J N C. J. Colloid Interf. Sci., 2011, 360(2): 606—616
[50] Mukherjee P, Crank J A, Sharma P S, Wijeratne A B, Adhikary R, Bose S, Armstrong D W, Petrich J W. J. Phys. Chem. B, 2008, 112(11): 3390—3396
[51] Zhao Y, Gao S J, Wang J J, Tang J M. J. Phys. Chem. B, 2008, 112(7): 2031—2039
[52] Wang J J, Wang H J, Zhang S L, Zhang H C, Zhao Y. J. Phys. Chem. B, 2007, 111(22), 6181—6188
[53] Wang H Y, Wang J J, Zhang S B, Xuan X P. J. Phys. Chem. B, 2008, 112(51): 16682—16689
[54] Sepúlveda L, Cortés J. J. Phys. Chem., 1985, 89(24): 5322—5324
[55] Belsic M, Marques M H V. Plechkova N, Seddon K R. Green Chem., 2007, 9(5): 481—490
[56] El Seoud O A, Pires P A R, Abdel-Moghny T, Bastos E L. J. Colloid Interf. Sci., 2007, 313 (1): 296—304
[57] Mosquera V, Río J M, Attwood D, García M, Jones M N, Prieto G, Suarez M J, Sarmiento F. J. Colloid Interf. Sci., 1998, 206(1): 66—76
[58] Wang H Y, Qingqin Feng Q Q, Wang J J, Zhang H C. J. Phys. Chem. B, 2010, 114(3): 1380—1387
[59] uczak J, Markiewicz M, Thoming J, Hupka J, Jungnickel C. J. Colloid Interf. Sci., 2011, 362(2): 415—422
[60] Pino V, Yao C, Anderson J L. J. Colloid Interf. Sci., 2009, 333(2): 548—556
[61] Wang J J, Zhang L M, Wang H Y, Wu C Z. J. Phys. Chem. B, 2011, 115(17): 4955—4962
[62] Rodríguez A, Graciani M M, Moyá M L. Langmuir, 2008, 24(22): 12785—12792
[63] Rodríguez A, Graciani M M, Fernández G, Moyá M L. J. Colloid Interf. Sci., 2009, 33(1): 207—215
[64] Thomaier S, Kunz W. J. Mol. Liq., 2007, 130(1/3): 104—107
[65] Li N, Zhang S H, Zheng L Q, Dong B, Li X W, Yu L. PhysChemChemPhys, 2008, 10(30): 4375—4377
[66] Feng Q Q, Wang H Y, Zhang S B, Wang J J. Colloids Surf. A, 2010, 367(1/3): 7—11
[67] Anderson J, Ding R, Ellen A, Armstrong D W. J. Am. Chem. Soc., 2005, 127(2): 593—604
[68] Baltazar Q Q, Chandawalla J, Sawyer K, Anderson J L. Colloids Surf. A, 2007, 302(1/3): 150—156
[69] Ao M, Xu G, Zhu Y, Bai Y J. Colloid Interf. Sci., 2008, 326(2): 490—495
[70] Burns C T, Lee S, Seifert S, Firestone M A. Polym. Adv. Technol., 2008, 19(10): 1369—1382
[71] Dong B, Gao Y A, Su Y J, Zheng L Q, Xu J K, Inoue T. J. Phys. Chem. B, 2010, 114: 340—348
[72] Beyaz A, Oh W S, Reddy V P. Colloids Surf. B, 2004, 35(2): 119—124
[73] Pramanik R, Sarkar S, Ghatak C, Rao V G, Mandal S, Sarkar N. J. Phys. Chem. B, 2011, 115(21): 6957—6963
[74] Zhang J L, Li W, Zhao Y J, Han B X, Yang G Y. Colloids Surf. A, 2009, 336: 110—114
[75] 雷声(Lei S), 张晶(Zhang J), 黄建滨(Huang J B). 物理化学学报(Acta Phys. -Chim. Sin.), 2007, 23(11): 1657—1661
[76] Behera K, Pandey S. J. Colloid Interf. Sci., 2007, 316(2): 803—814
[77] Guo P, Guo R. J. Chem. Eng. Data, 2010, 55(9): 3590—3597
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[3] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[4] 刘宁, 刘水林, 伍素云, 付琳, 吴智, 李来丙. 金属基介孔固体碱催化剂的制备与应用[J]. 化学进展, 2020, 32(5): 536-547.
[5] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[6] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[7] 赵剑曦, 顾攀攀, 曾慧, 邓生禄. 表面活性剂在非极性有机溶剂中的自组装[J]. 化学进展, 2019, 31(5): 643-653.
[8] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[9] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[10] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[11] 牛娜, 李志英, 高婷婷, 刘玉东, 刘晓丽, 刘凤岐*. 疏水缔合水凝胶[J]. 化学进展, 2017, 29(7): 757-765.
[12] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[13] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[14] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[15] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.
阅读次数
全文


摘要

离子液体参与构建的胶束