English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 659-673   后一篇

• 综述与评论 •

离子液体表/界面性质与结构

闫燕, 杨启炜, 邢华斌*, 苏宝根, 任其龙   

  1. 浙江大学生物质化工教育部重点实验室 化学工程与生物工程学系 杭州 310027
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.20936005,21006082)和国家高技术发展计划(863)项目(No.2012AA040211)资助

Surface/Interfacial Properties and Structures of Ionic Liquids

Yan Yan, Yang Qiwei, Xing Huabin, Su Baogen, Ren Qilong   

  1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
离子液体与气体、溶剂等物质组成的多相体系为吸收、萃取、两相催化等技术的发展提供了新的平台。离子液体的表/界面性质与结构是含离子液体多相体系的重要科学问题,可在介观尺度下显著影响多相体系反应和分离过程的效率。近年来,离子液体表/界面性质和结构的研究得到了广泛的关注。本文综述了离子液体及其与水、有机溶剂组成的混合物的表/界面张力及结构研究进展,介绍了现有的研究方法、研究对象与研究成果,归纳了离子液体及其混合物表/界面张力及结构的变化规律,分析了表/界面结构与表/界面张力之间的关系,探讨了离子液体表/界面研究存在的问题和未来的发展方向。
Heterogeneous systems containing ionic liquids (ILs) with gases and solvents extend the acpplications of ILs in absorption, extraction and heterogeneous catalysis. In recent years, the surface/interfacial properties and surface/interfacial structures of ionic liquids have been widely studied, because they are important due to their remarkable effects on heterogeneous reactions and separation efficiency. In this article, the surface/interfacial tension,as well as the surface/interfacial structures of ILs and their mixtures with water and organic solvents are summarized. The research methods, objectives and results are introduced. The relationship between surface/interfacial tension and surface/interfacial structures is elucidated. Finally, the exiting problems and development prospects of the studies on surface/interfacial properties and surface/interfacial structures of ILs are discussed.

Contents
1 Introduction
2 Surface tension of ionic liquids and their mixtures
2.1 Surface tension of ionic liquids
2.2 Surface tension of ionic liquid mixtures
3 Liquid/liquid interfacial tension of ionic liquids
4 Surface/interfacial structures of ionic liquids
4.1 Direct recoil spectroscopy
4.2 Neutron and X-ray reflectivity
4.3 Ultra-high vacuum systems
4.4 Non-linear spectroscopy
4.5 Molecular dynamic simulation
5 Conclusion and outlook

中图分类号: 

()
[1] Seddon K R. J. Chem. Technol. Biotechnol., 1997, 68: 351—356
[2] Rogers R D, Seddon K R. Science, 2003, 302: 792—793
[3] Roy S R, Jadhavar P S, Seth K, Sharma K K, Chakraborti A K. Synthesis-Stuttgart, 2011, (14): 2261—2267
[4] Zhang D N, Li J T, Song Y L, Chen G F. Lett. Org. Chem., 2011, 8(6): 385—390
[5] Chen H, Liu D L, Chen L F, Qu R J. Mater. Chem. Phys., 2011, 128(3): 331—335
[6] Garima, Srivastava V P, Yadav L D S. Tetrahedron Lett., 2011, 52(36): 4622—4626
[7] Han X, Armstrong D W. Accounts Chem. Res., 2007, 40(11): 1079—1086
[8] Wang P, Wenger B, Humphry-Baker R, Moser J E, Teuscher J, Kantlehner W, Mezger J, Stoyanov E V, Zakeeruddin S M, Gratzel M. J. Am. Chem. Soc., 2005, 127(18): 6850—6856
[9] Gutowski K E, Broker G A, Willauer H D, Huddleston J G, Swatloski R P, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2003, 125(22): 6632—6633
[10] Visser A E, Rogers R D. J. Solid State Chem., 2003, 171(1/2): 109—113
[11] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430(7003): 1012—1016
[12] Zhou Y, Schattka J H, Antonietti M. Nano Lett., 2004, 4(3): 477—481
[13] Wu W Z, Han B X, Gao H X, Liu Z M, Jiang T, Huang J. Angew. Chem. Int. Ed., 2004, 43(18): 2415—2417
[14] Milota M, Mosher P, Li K C. Forest Prod. J., 2007, 57(5): 73—77
[15] Albo J, Luis P, Irabien A. Desalin. Water Treat., 2011, 27(1/3): 54—59
[16] Rodriuez H, Francisco M, Soto A, Arce A. Fluid Phase Equilibr., 2010, 298(2): 240—245
[17] Huang J, Jiang T, Gao H X, Han B X, Liu Z M, Wu W Z, Chang Y H, Zhao G Y. Angew. Chem. Int. Ed., 2004, 43(11): 1397—1399
[18] Khan F A, Dash J, Satapathy R, Upadhyay S K. Tetrahedron Lett., 2004, 45(15): 3055—3058
[19] Hagiwara H, Shimizu Y, Hoshi T, Suzuki T, Ando M, Ohkubo K, Yokoyama C. Tetrahedron Lett., 2001, 42(26): 4349—4351
[20] Tariq M, Freire M G, Saramago B, Coutinho J A P, Lopes J N C, Rebelo L P N. Chem. Soc. Rev., 2012, 41(2): 829—868
[21] Guan W, Tong J, Chen S P, Liu Q S, Gao S L. J. Chem. Eng. Data, 2010, 55(9): 4075—4079
[22] Carrera G V S M, Afonso C A M, Branco L C. J. Chem. Eng. Data, 2010, 55(2): 609—615
[23] Kilaru P, Baker G A, Scovazzo P. J. Chem. Eng. Data, 2007, 52(6): 2306—2314
[24] Freire M G, Carvalho P J, Fernandes A M, Marrucho I M, Queimada A J, Coutinho J A P. J. Colloid. Interf. Sci., 2007, 314(2): 621—630
[25] Restolho J, Mata J L, Saramago B. J. Colloid. Interf. Sci., 2009, 340(1): 82—86
[26] Sanchez L G, Espel J R, Onink F, Meindersma G W, de Haan A B. J. Chem. Eng. Data, 2009, 54(10): 2803—2812
[27] Ghatee M H, Zolghadr A R. Fluid Phase Equilibr., 2008, 263(2): 168—175
[28] Law G, Watson P R. Langmuir, 2001, 17(20): 6138—6141
[29] Liu Q S, Tong J, Tan Z C, Welz-Biermann U, Yang J Z. J. Chem. Eng. Data, 2010, 55(7): 2586—2589
[30] Carvalho P J, Freire M G, Marrucho I M, Queimada A J, Coutinho J A P. J. Chem. Eng. Data, 2008, 53(6): 1346—1350
[31] Tong J, Liu Q S, Zhang P, Yang J Z. J. Chem. Eng. Data, 2007, 52(4): 1497—1500
[32] Xu W G, Lü X M, Zhang Q G, Gui J S, Yang J Z. Chinese J. Chem., 2006, 24(3): 331—335
[33] Yang J Z, Zhang Q G, Xue F. J. Mol. Liq., 2006, 128(1/3): 81—84
[34] 佟静(Tong J), 张庆国(Zhang Q G), 洪梅(Hong M), 杨家振 (Yang J Z). 物理化学学报.(Acta Phys: Chim. Sin.), 2006, 22(1): 71—75
[35] 张庆国(Zhang Q G), 关伟(Guan W), 佟静(Tong J), 金振兴(Jin Z X). 高等学校化学学报(Chem. J. Chinese Univ.), 2006, 27(5): 925—928
[36] 杨家振(Yang J Z), 张庆国(Zhang Q G), 黄明(Huang M), 薛凤(Xue F), 臧树良 (Zang S L). 高等学校化学学报(Chem. J. Chinese Univ.), 2005, 26(10): 1873—1876
[37] Zang S L, Zhang Q G, Huang M, Wang B, Yang J Z. Fluid Phase Equilibr., 2005, 230(1/2): 192—196
[38] Zhang Q G, Yang J Z, Lu X M, Gui J S, Huang M. Fluid Phase Equilibr., 2004, 226(1/2): 207—211
[39] Tong J, Hong M, Guan W, Li J B, Yang J Z. J. Chem. Thermodyn., 2006, 38(11): 1416—1421
[40] Tong J, Liu Q, Guan W, Yang J. J. Phys. Chem. B, 2007, 111(12): 3197—3200
[41] Rivera-Rubero S, Baldelli S. J. Phys. Chem. B, 2006, 110(10): 4756—4765
[42] Aliaga C, Baker G A, Baldelli S. J. Phys. Chem. B, 2008, 112(6): 1676—1684
[43] Yan T, Li S, Jiang W, Gao X, Xiang B, Voth G A. J. Phys. Chem. B, 2006, 110(4): 1800—1806
[44] Lynden-Bell R M, Del Popolo M. Phys. Chem. Chem. Phys., 2006, 8(8): 949—954
[45] Kolbeck C, Lehmann J, Lovelock K, Cremer T, Paape N, Wasserscheid P, Froba A P, Maier F, Steinruck H P. J. Phys. Chem. B, 2010, 114(51): 17025—17036
[46] Jin H, O'Hare B, Dong J, Arzhantsev S, Baker G A, Wishart J F, Benesi A J, Maroncelli M. J. Phys. Chem. B, 2008, 112(1): 81—92
[47] Tariq M, Serro A P, Mata J L, Saramago B, Esperanca J, Lopes J, Rebelo L. Fluid Phase Equilibr., 2010, 294(1/2, Sp. Iss. SI): 131—138
[48] Langmuir I. Phenomena, Atoms, and Molecules. 1st ed. New York: Philosophical Library, 1950
[49] Law G, Watson P R. Chem. Phys. Lett., 2001, 345(1/2): 1—4
[50] Blesic M, Swadzba-Kwasny M, Holbrey J D, Lopes J N C, Seddon K R, Rebelo L P N. Phys. Chem. Chem. Phys., 2009, 11(21): 4260—4268
[51] Zhang Q, Li Z, Zhang J, Zhang S, Zhu L, Yang J, Zhang X, Deng Y. J. Phys. Chem. B, 2007, 111(11): 2864—2872
[52] Zhou Z, Matsumoto H, Tatsumi K. Chem. Phys. Chem., 2005, 6(7): 1324—1332
[53] Rebelo L P N, Lopes J N C, Esperana J M S S, Filipe E. J. Phys. Chem. B, 2005, 109(13): 6040—6043
[54] Souckova M, Klomfar J, Patek J. Fluid Phase Equilibr., 2011, 303(2): 184—190
[55] Yang J, Tong J, Li J, Li J, Tong J. J. Colloid. Interf. Sci., 2007, 313(1): 374—377
[56] Klomfar J, Souckov M, Patek J. J. Chem. Thermodyn., 2010, 42(3): 323—329
[57] Torrecilla J S, Rafione T, Garcia J, Rodriguez F. J. Chem. Eng. Data, 2008, 53(4): 923—928
[58] Deetlefs M, Seddon K R, Shara M. Phys. Chem. Chem. Phys., 2006, 8(5): 642—649
[59] Gardas R L, Coutinho J A P. Fluid Phase Equilibr., 2008, 265(1/2): 57—65
[60] Ghatee M H, Zare M, Zolghadr A R, Moosavi F. Fluid Phase Equilibr., 2010, 291(2): 188—194
[61] Ghatee M H, Moosavi F, Zolghadr A R, Jahromi R. Ind. Eng. Chem. Res., 2010, 49(24): 12696—12701
[62] Liu Q S, Yang M A, Yan P F, Liu X M, Tan Z C, Welz-Biermann U. J. Chem. Eng. Data, 2010, 55(11): 4928—4930
[63] Yang J Z, Lu X M, Gui J S, Xu W G. Green Chem., 2004, 6(11): 541—543
[64] Martino W, de la Mora J F, Yoshida Y, Saito G, Wilkes J. Green Chem., 2006, 8(4): 390—397
[65] Shamsipur M, Beigi A, Teymouri M, Pourmortazavi S M, Irandoust M. J. Mol. Liq., 2010, 157(1): 43—50
[66] Kim K S, Demberelnyamba D, Shin B K, Yeon S H, Choi S, Cha J H, Lee H, Lee C S, Shim J J. Korean J. Chem. Eng., 2006, 23(1): 113—116
[67] Muhammad A, Mutalib M I A, Wilfred C D, Murugesan T, Shafeeq A. J. Chem. Thermodyn., 2008, 40(9): 1433—1438
[68] Wandschneider A, Lehmann J K, Heintz A. J. Chem. Eng. Data., 2008, 53(2): 596—599
[69] Pereiro A B, Santamarta F, Tojo E, Rodríguez A, Tojo J. J. Chem. Eng. Data, 2006, 51(3): 952—954
[70] De Castro C A N, Langa E, Morais A L, Lopes M L M, Lourenco M J V, Santos F J V, Santos M S C S, Lopes J N C, Veiga H I M, Macatrao M, Esperanca J M S S, Marques C S, Rebelo L P N, Afonso C A M. Fluid Phase Equilibr., 2010, 294(1/2): 157—179
[71] Gomez E, Gonzalez B, Calvar N, Tojo E, Dominguez A. J. Chem. Eng. Data, 2006, 51(6): 2096—2102
[72] Domanska U, Krolikowska M. J. Colloid Interface Sci., 2010, 348(2): 661—667
[73] Wang J Y, Jiang H C, Liu Y M, Hu Y Q. J. Chem. Thermodyn., 2011, 43(5): 800—804
[74] Liu W W, Cheng L Y, Zhang Y M, Wang H P, Yu M F. J. Mol. Liq., 2008, 140(1/3): 68—72
[75] Russo J W, Hoffmann M M. J. Chem. Eng. Data, 2010, 55(12): 5900—5905
[76] Sung J, Jeon Y, Kim D, Iwahashi T, Iimori T, Seki K, Ouchi Y. Chem. Phys. Lett., 2005, 406: 495—500
[77] Bowers J, Butts C P, Martin P J, Vergara-Gutierrez M C, Heenan R K. Langmuir, 2004, 20(6): 2191—2198
[78] Modaressi A, Sifaoui H, Mielcarz M, Domanska U, Rogalski M. Colloid Surf. A-Physicochem. Eng. Asp., 2007, 302(1/3): 181—185
[79] Rilo E, Pico J, Garcia-Garabal S, Varela L M, Cabeza O. Fluid Phase Equilibr., 2009, 285(1/2): 83—89
[80] Ries L, Do Amaral F A, Matos K, Martini E, de Souza M O, de Souza R F. Polyhedron, 2008, 27(15): 3287—3293
[81] Liu W W, Zhao T Y, Zhang Y M, Wang H P, Yu M F. J. Solution Chem., 2006, 35(10): 1337—1346
[82] Cammarata L, Kazarian S G, Salter P A, Welton T. Phys. Chem. Chem. Phys., 2001, 3(23): 5192—5200
[83] Iimori T, Iwahashi T, Kanai K, Seki K, Sung J, Kim D, Hamaguchi H, Ouchi Y. J. Phys. Chem. B, 2007, 111(18): 4860—4866
[84] Jiang W, Wang Y, Yan T, Voth G A. J. Phys. Chem. C, 2008, 112(4): 1132—1139
[85] Wang Y, Voth G A. J. Am. Chem. Soc., 2005, 127(35): 12192—12193
[86] Varela L M, Carrete J, Turmine M, Rilo E, Cabeza O. J. Phys. Chem. B, 2009, 113(37): 12500—12505
[87] Domanska U, Pobudkowska A, Rogalski M. J. Colloid Interf. Sci., 2008, 322(1): 342—350
[88] Santos C S, Baidelli S. J. Phys. Chem. C, 2008, 112(30): 11459—11467
[89] Gardas R L, Ge R, Ab Manan N, Rooney D W, Hardacre C. Fluid Phase Equilibr., 2010, 294(1/2): 139—147
[90] Zhang X, Wang J, Hu Y. J. Chem. Eng. Data, 2010, 55(11): 4687—4690
[91] Jiqin Z, Jian C, Chengyue L, Weiyang F. J. Chem. Eng. Data, 2007, 52(3): 812—816
[92] 朱吉钦(Zhu J Q), 于燕梅(Yu Y M), 陈健(Chen J), 费维扬(Fei W Y). 化工学报(J. Chem. Ind. Eng.). 2006, 57(8): 1835—1840
[93] Wertz C, Tschersich A, Lehmann J K, Heintz A. J. Mol. Liq., 2007, 131/132: 2—6
[94] Alam M T, Islam M, Okajima T, Ohsaka T. J. Phys. Chem. C, 2008, 112(7): 2601—2606
[95] Alam M T, Islam M M, Okajima T, Ohsaka T. Electrochem. Commun., 2007, 9(9): 2370—2374
[96] Islam M M, Alam M T, Okajima T, Ohsaka T. J. Phys. Chem. B, 2007, 111(44): 12849—12856
[97] Kakiuchi T, Shigematsu F, Kasahara T, Nishi N, Yamamoto M. Phys. Chem. Chem. Phys., 2004, 6(18): 4445—4449
[98] Ishimatsu R, Shigematsu F, Hakuto T, Nishi N, Kakiuchi T. Langmuir, 2007, 23(2): 925—929
[99] Yasui Y, Kitazumi Y, Nishi N, Kakiuchi T. J. Chem. Eng. Data, 2010, 55(10): 4463—4466
[100] Yasui Y, Kitazumi Y, Mizunuma H, Nishi N, Kakiuchi T. Electrochem. Commun., 2010, 12(11): 1479—1482
[101] Yasui Y, Kitazumi Y, Nishi N, Kakiuchi T. J. Phys. Chem. B, 2010, 114(34): 11141—11148
[102] Fitchett B D, Rollins J B, Conboy J C. J. Electrochem. Soc., 2005, 152(8): E251—E258
[103] Fitchett B D, Rollins J B, Conboy J C. Langmuir, 2005, 21(26): 12179—12186
[104] Van Oss C J. Interfacial forces in aqueous media. 2nd ed. New York: Taylor & Francis, 2006
[105] Steinrück H P, Libuda J, Wasserscheid P, Cremer T, Kolbeck C, Laurin M, Maier F, Sobota M, Schulz P S, Stark M. Adv. Mater., 2011, 23(22/23): 2571—2587
[106] Gannon T J, Tassotto M, Watson P R. Chem. Phys. Lett., 1999, 300(1/2): 163—168
[107] Law G, Watson P R, Carmichael A J, Seddon K R. Phys. Chem. Chem. Phys., 2001, 3(14): 2879—2885
[108] Gannon T J, Law G, Watson P R, Carmichael A J, Seddon K R. Langmuir, 1999, 15(24): 8429—8434
[109] Bowers J, Vergara-Gutierrez M C, Webster J R P. Langmuir, 2004, 20(2): 309—312
[110] Solutskin E, Ocko B M, Taman L, Kuzmenko I, Gog T, Deutsch M. J. Am. Chem. Soc., 2005, 127(21): 7796—7804
[111] Jeon Y, Sung J, Bu W, Vaknin D, Ouchi Y, Kim D. J. Phys. Chem. C, 2008, 112(49): 19649—19654
[112] Lovelock K R J, Villar-Garcia I J, Maier F, Steinruück H, Licence P. Chem. Rev., 2010, 110(9): 5158—5190
[113] Maier F, Cremer T, Kolbeck C, Lovelock K R J, Paape N, Schulz P S, Wasserscheid P, Steinruck H P. Phys. Chem. Chem. Phys., 2010, 12(8): 1905—1915
[114] Lovelock K R J, Kolbeck C, Cremer T, Paape N, Schulz P S, Wasserscheid P, Maier F, Steinruück H P. J. Phys. Chem. B, 2009, 113(9): 2854—2864
[115] Kolbeck C, Cremer T, Lovelock K R J, Paape N, Schulz P S, Wasserscheid P, Maier F, Steinruück H P. J. Phys. Chem. B, 2009, 113(25): 8682—8688
[116] Kolbeck C, Killian M, Maier F, Paape N, Wasserscheid P, Steinruück H. Langmuir, 2008, 24(17): 9500—9507
[117] Smith E F, Rutten F J M, Villar-Garcia I J, Briggs D, Licence P. Langmuir, 2006, 22(22): 9386—9392
[118] Krischok S, Eremtchenko M, Himmerlich M, Lorenz P, Uhlig J, Neumann A, ttking R, Beenken W J D, Hfft O, Bahr S, Kempter V, Schaefer J A. J. Phys. Chem. B, 2007, 111(18): 4801—4806
[119] Hfft O, Bahr S, Himmerlich M, Krischok S, Schaefer J A, Kempter V. Langmuir, 2006, 22(17): 7120—7123
[120] Lockett V, Sedev R, Bassell C, Ralston J. Phys. Chem. Chem. Phys., 2008, 10(9): 1330—1335
[121] Iwahashi T, Miyamae T, Kanai K, Seki K, Kim D, Ouchi Y. J. Phys. Chem. B, 2008, 112(38): 11936—11941
[122] Perera J, Stevens G. Anal. Bioanal. Chem., 2009, 395(4): 1019—1032
[123] Leich M A, Richmond G L. Faraday Discuss., 2005, 129: 1—21
[124] Baldelli S. J. Phys. Chem. B, 2003, 107(25): 6148—6152
[125] Iwahashi T, Sakai Y, Kanai K, Kim D, Ouchi Y. Phys. Chem. Chem. Phys., 2010, 12(40): 12943—12946
[126] Rivera-Rubero S, Baldelli S. J. Am. Chem. Soc., 2004, 126(38): 11788—11789
[127] Martinez I S, Baldelli S. J. Phys. Chem. C, 2010, 114(26): 11564—11575
[128] Iimori T, Iwahashi T, Ishii H, Seki K, Ouchi Y, Ozawa R, Hamaguchi H, Kim D. Chem. Phys. Lett., 2004, 389(4/6): 321—326
[129] Aliaga C, Baldelli S. J. Phys. Chem. B, 2007, 111(33): 9733—9740
[130] Santos C S, Rivera-Rubero S, Dibrov S, Baldelli S. J. Phys. Chem. C, 2007, 111(21): 7682—7691
[131] Sung J, Jeon Y, Kim D, Iwahashi T, Seki K, Iimori T, Ouchi Y. Colloid. Surface. A, 2006, 284: 84—88
[132] Bhargava B L, Balasubramanian S. J. Am. Chem. Soc., 2006, 128(31): 10073—10078
[133] Sarangi S S, Raju S G, Balasubramanian S. Phys. Chem. Chem. Phys., 2011, 13(7): 2714—2722
[134] Pensado A S, Malfreyt P, Padua A. J. Phys. Chem. B, 2009, 113(44): 14708—14718
[135] Lynden-Bell R M. Mol. Phys., 2003, 101(16): 2625—2633
[136] Chaumont A, Schurhammer R, Wipff G. J. Phys. Chem. B, 2005, 109(40): 18964—18973
[137] Sieffert N, Wipff G. J. Phys. Chem. B, 2006, 110(26): 13076—13085
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[3] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[4] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[5] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[6] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[7] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[8] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[9] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[10] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[11] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[12] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.
[13] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[14] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[15] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.
阅读次数
全文


摘要

离子液体表/界面性质与结构