English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 650-658 前一篇   

• 综述与评论 •

铝/水反应可控制氢

马广璐, 庄大为, 戴洪斌, 王平   

  1. 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
  • 收稿日期:2011-08-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.51071155)、辽宁省自然科学基金项目(No.20102231)、国家杰出青年科学基金项目(No.51125003);国家重点基础研究发展计划(973)项目(No.2010CB631305)资助

Controlled Hydrogen Generation by Reaction of Aluminum with Water

Ma Guanglu, Zhuang Dawei, Dai Hongbin, Wang Ping   

  1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2011-08-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
铝是地壳中最富有的金属元素,理论上可100%重复利用。铝/水反应所提供的绿色能源--氢能,很有可能解决人类将面临的能源短缺和环境污染问题。本文介绍了铝/水反应可控制氢的原理、反应机理、制氢方法及制氢装置的最新研究进展,并讨论了研发中需解决的问题。铝/水反应制氢的关键在于破坏或抑制铝表面固有的或原位再生的致密钝化膜。该制氢系统的实际应用需具备快速的反应动力学,而制氢装置的设计应综合考虑反应热的利用、燃料电池产生的水循环利用、燃料盒和膜分离技术的应用,使用回收的废铝将降低其生产成本,实现铝基制氢系统的商业化应用。
Aluminum is the most abundant crustal metallic element on the earth and 100% recycled in theory. Controlled hydrogen generation (HG) by reaction of aluminum with water could provide a renewable energy cycle to address the global energy problem. In this perspective, we present the state of art in the principle, mechanism, approaches, and hydrogen generator of HG from the reaction of aluminum with water, and further discuss some remaining problems in the development of aluminum-based HG system. The key to the HG by the reaction of aluminum with water is how to disrupt/inhibit a native/regeneration coherent and adherent passivation film of aluminum surface. The fast kinetics is desirable in developing the aluminum-based HG system for the practical application. The design of hydrogen generator should focus on the utilization of reaction heat to preheat fuel, the recycle of water from the fuel cell, the fuel cartridges and the process of separation by the membrane. The use of recycled scrap aluminum will provide a reasonable hydrogen cost, thus promoting its commercial applications.
Contents
1 Introduction
2 The principle and mechanism of hydrogen generation from reaction of aluminum with water
3 Approaches of hydrogen generation from reaction of aluminum with water
3.1 Hydroxide promoters
3.2 Oxide/salt promoters
3.3 Aluminum alloying
3.4 Combined hydroxide and oxide/salt promoters
4 Design of hydrogen generator of hydrogen generation of reaction of aluminum with water
5 Cost and recycling of spent fuel of hydrogen generation from reaction of aluminum with water
6 Conclusions and outlook

中图分类号: 

()
[1] Van den Berg A W C, Areán C O. Chem. Commun., 2008, 668-681
[2] Demirci U B, Miele P, Garin F. Catal. Today, 2011, 170 (1): 1-2
[3] Zeng K, Zhang D K. Prog. Energy Combust. Sci., 2010, 36 (3): 307-326
[4] Osterloh F E. Chem. Mater., 2008, 20 (1) : 35-54
[5] Cho Y S, Kim J H. Int. J. Hydrogen Energy, 2011, 36 (14): 8192-8202
[6] Deng Z Y, Ferreira J M F, Sakka Y. J. Am. Ceram. Soc., 2008, 91 (12): 3825-3834
[7] Petrovic J, Thomas G. Reaction of Aluminium with Water to Produce Hydrogen, White Paper for U.S. Department of Energy, 2008. http://www1.eere.energy.gov/hydrogen-andfuelcells/pdfs/aluminium_water_hydrogen.pdf
[8] Wang H Z, Leung D Y C, Leung M K H, Ni M. Renew. Sust. Energ. Rev., 2009, 13 (4): 845-853
[9] Business Wire. AlumiFuel Power, Inc. Announces Delivery of Its First Production Hydrogen Generator. (2009-12-30) http://www.businesswire.com/multimedia/home/20091230005039/en/1898928/AlumiFuel-Power-Announces-Delivery-Production-Hydrogen-Generator
[10] Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E. J. Phys. Chem. B, 2002, 106 (20): 5155-5162
[11] Roach P J, Woodward W H, Castleman A W, Reber A C, Khanna S N. Science, 2009, 323 (5913): 492-495
[12] Phillip Broadwith. Water Split with Aluminium. (2009-01-28) http://www.rsc.org/chemistryworld/News/2009/January/28010901.asp
[13] Shimojo F, Ohmura S, Kalia R K, Nakano A, Vashishta P. Phys. Rev. Lett., 2010, 104 (12): art. no. 126102
[14] Russo M F, Li R, Mench M, van Duin A C T. Int. J. Hydrogen Energy, 2011, 36 (10): 5828-5835
[15] Levin I, Brandon D. J. Am. Ceram. Soc., 1998, 81 (8): 1995-2012
[16] Pyun S I, Moon S M. J. Solid State Electrochem., 2000, 4 (5): 267-272
[17] Belitskus D. J. Electrochem. Soc., 1970, 117 (8): 1097-1099
[18] Martinez S S, Benites W L, Gallegos A A A, Sebastian P J. Sol. Energ. Mat. Sol. C, 2005, 88 (2): 237-243
[19] Martinez S S, Sanchez L A, Gallegos A A A, Sebastian P J. Int. J. Hydrogen Energy, 2007, 32 (15): 3159-3162
[20] Soler L, Macanás J, Muñoz M, Casado J. J. Power Sources, 2007, 169 (1): 144-149
[21] Deng Z Y, Ferreiraw J M F, Tanaka Y, Ye J H. J. Am. Ceram. Soc., 2007, 90 (5): 1521-1526
[22] Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J H. Int. J. Hydrogen Energy, 2010, 35 (18): 9561-9568
[23] Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrogen Energy, 2011, 36 (8): 4781-4791
[24] Skrovan J, Alfantazi A, Troczynski T. J. Appl. Electrochem., 2009, 39 (10): 1695-1702
[25] Alinejad B, Mahmoodi K. Int. J. Hydrogen Energy, 2009, 34 (19): 7934-7938
[26] Mahmoodi K, Alinejad B. Int. J. Hydrogen Energy, 2010, 35 (11): 5227-5232
[27] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. J. Power Sources, 2009, 192 (1): 21-26
[28] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. Int. J. Hydrogen Energy, 2010, 35 (3): 1038-1048
[29] Macanás J, Soler L, Candela A M, Muñoz M, Casado J. Energy, 2011, 36 (5): 2493-2501
[30] Ziebarth J T, Woodall J M, Kramer R A, Choi G. Int. J. Hydrogen Energy, 2011, 36 (9): 5271-5279
[31] Wang W, Chen D M, Yang K. Int. J. Hydrogen Energy, 2010, 35 (21): 12011-12019
[32] Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energy, 2007, 32 (14): 2809-2815
[33] Fan M Q, Sun L X, Xu F. Energy Fuels, 2009, 23: 4562-4566
[34] Parmuzina A V, Kravchenko O V. Int. J. Hydrogen Energy, 2008, 33 (12): 3073-3076
[35] Parmuzina A V, Kravchenko O V, Bulychev B M, Shkol'nikov E I, Burlakova A G. Russ. Chem. Bull., 2009, 58 (3): 493-498
[36] Zhao Z W, Chen X Y, Hao M M. Energy, 2011, 36 (5): 2782-2787
[37] Rosenband V, Gany A. Int. J. Hydrogen Energy, 2010, 35 (20): 10898-10904
[38] Fan M Q, Sun L X, Xu F, Mei D S, Chen D, Chai W X, Huang F L, Zhang Q M. Int. J. Hydrogen Energy, 2011, 36 (16): 9791-9798
[39] Eom K S, Kwon J Y, Kim M J, Kwon H S. J. Mater. Chem., 2011, 21 (34): 13047-13051
[40] Eom K S, Kim M J, Oh S K, Cho E A, Kwon H S. Int. J. Hydrogen Energy, 2011, 36 (18): 11825-11831
[41] Jung C R, Kundu A, Ku B, Gil J H, Lee H R, Jang J H. J. Power Sources, 2008, 175 (1): 490-494
[42] Dai H B, Ma G L, Xia H J, Wang P. Energy Environ. Sci., 2011, 4 (6): 2206-2212
[43] Shkolnikov E, Vlaskin M, Iljukhin A, Zhuk A, Sheindlin A. J. Power Sources, 2008, 185 (2): 967-972
[44] Wang E D, Shi P F, Du C Y, Wang X R. J. Power Sources, 2008, 181 (1): 144-148
[45] 梁艳(Liang Y), 王平(Wang P), 戴洪斌(Dai H B). 化学进展(Progress in Chemistry), 2009, 21 (10): 2219-2228
[46] Wang P, Kang X D. Dalton Trans., 2008, 5400-5413
[47] Efficiency E. U.S. Energy Requirements for Aluminum Production: Historical Perspective, Theoretical Limits and Current Practices, 2007. http://www1.eere.energy.gov/industry/aluminum/pdfs/al_theoretical.pdf
[48] Wang H, Leung D Y C, Leung M K H. Appl. Energy, 2012, 90(1): 100-105
[49] Dusza J, Sajgalik P. Int. J. Mater. Prod. Tec., 2005, 23 (1/2): 91-120
[50] Taufiq-Yap Y H, Abdullah N F, Basri M. Sains Malaysiana, 2011, 40 (6): 587-594
[51] Ching W Y, Ouyang L Z, Rulis P, Yao H Z. Phys. Rev. B, 2008, 78 (1): art. no. 014106
[52] Hollingbery L A, Hull T R. Polym. Degrad. Stab., 2010, 95 (12): 2213-2225
[53] Galbraith A, Bullock S, Manias E. Fundamentals of Pharmacology: A Text for Nurses and Health Professionals. 2nd ed. Harlow: Pearson, 1999. 482
[54] Soler L, Macanás J, Muñoz M, Casado J. Int. J. Hydrogen Energy, 2007, 32 (18): 4702-4710
[55] Dai H B, Ma G L, Xia H J, Wang P. Fuel Cells, 2011, 11 (3): 424-430
[56] Dai H B, Ma G L, Kang X D, Wang P. Catal. Today, 2011, 170 (1): 50-55
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[5] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[6] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[7] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[8] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[9] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[10] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[11] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[12] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[13] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[14] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[15] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
阅读次数
全文


摘要

铝/水反应可控制氢