English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 628-636 前一篇   后一篇

• 综述与评论 •

用于有机物降解的电化学阳极材料

卓琼芳1, 杨波2, 邓述波1,3, 黄俊1,3, 王斌1, 余刚1,3   

  1. 1. 清华大学环境学院POPs研究中心 北京 100084;
    2. 深圳大学化学与化工学院环境系 深圳 518060;
    3. 环境模拟与污染控制国家重点联合实验室 北京 100084
  • 收稿日期:2011-08-01 修回日期:2011-11-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.50625823,50838002),北京市优博基金项目(YB20081000304)资助

Electrochemical Anodic Materials Used for Degradation of Organic Pollutants

Zhuo Qiongfang1, Yang Bo2, Deng Shubo1,3, Huang Jun1,3, Wang Bin1, Yu Gang1,3   

  1. 1. POPs Research Centre, School of Environment, Tsinghua University, Beijing 100084, China;
    2. College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China;
    3. State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing 100084, China
  • Received:2011-08-01 Revised:2011-11-01 Online:2012-04-24 Published:2012-02-08
电化学氧化法可将难降解的有机物转化为可生化降解物质或直接矿化,具有操作简便,清洁能源,无二次污染等优点。本文介绍了电催化氧化机理最新进展,包括近年来所报道的各种电极材料直接或间接电氧化降解有机物的机制;回顾了近年来阳极材料的研究现状,以碳电极、金属电极和钛基形稳电极为主,包括各种新型电极的组成、降解性能及其钝化原因等,并对今后电氧化阳极材料及相关工艺的研究方向提出建议。
In recent years, researchers plunged to find efficient solutions to remove contaminants in water. Electrochemical oxidation methods were studied extensively because of the simple, clean energy and no secondary pollution. The refractory organic pollutants can be converted to biodegradable substances or direct mineralization by electrochemical oxidation method. The present review summarized the progress on electro-chemical oxidation mechanism, the recent development of anode materials, and proposed the research trend in the future. In electro-chemical oxidation mechanism aspect, the direct and indirect approaches are discussed. Some parameters which could impact the direct and indirect processes were considered. Apart from parameters, the dependence of anodic materials on the direct and indirect processes was also discussed. With the progress of anodic materials, carbon electrode, elemental metal electrode and dimensionally stable anode were summarized. All of the anodes were made to prolong the lifespan and improve the catalysis activity by adding the interlayer and adulterating the active components. The removal rates were collected to compare these anodes. For some typical anodes, the life span, the contact angle, the oxygen evolution potential (OEP) and the impedance were also listed. At last, the research trend was proposed. To achieve the commercial application of electrochemical oxidation method, the problems of the cost, the passivation membrane on the anode, and current density should be resolved.
Contents
1 Introduction
2 The mechanism of electro-chemical oxidation of organic pollutants
2.1 Direct electrochemical oxidation on the surface of anode
2.2 Indirect electrochemical oxidation by oxidative intermediates
3 Anodic materials
3.1 Carbon electrode
3.2 Elemental metal electrode
3.3 Dimensionally stable anode (DSA)
4 Summary and prospect

中图分类号: 

()
[1] Sun Z R, Takahashi F, Odaka Y, Fukushi K, Oshima Y, Yamamoto K. Chemosphere, 2007, 66: 151-157
[2] Li X Z, Liu H L, Yue P T, Sun Y P. Environ. Sci. Technol., 2000, 34: 4401-4406
[3] Nakui H, Okitsu K, Maeda Y, Nishimura R. Ultrason. Sonochem., 2007, 14: 191-196
[4] Zhou Y R, Zhu W P, Liu F D, Wang J B, Yang S X. Chemosphere, 2007, 66: 145-150
[5] Jho E H, Singhal N, Turner S. J. Hazard. Mater., 2010, 184: 234-240
[6] Zhang Z H, Shan Y B, Wang J, Ling H J, Zang S L, Gao W, Zhao Z, Zhang H C. J. Hazard. Mater., 2007, 147: 325-333
[7] 杨波(Yang B), 余刚(Yu G), 张祖麟(Zhang Z L). 化学进展(Progress in Chemistry), 2006, 18: 87-92
[8] Murugananthan M, Yoshihara S, Rakuma T, Uehara N, Shirakashi T. Electrochim. Acta, 2007, 52: 3242-3249
[9] Chaplin B P, Schrader G, Farrell J. Environ. Sci. Technol., 2009, 43: 8302-8307
[10] Fierro S, Ouattara L, Calderon E H, Passas-Lagos E, Baltruschat H, Comninellis C. Electrochim. Acta, 2009, 54: 2053-2061
[11] Rosenthal K I, Veselovkii V I. Dokl. Akad. Nauk SSR, 1956, 111: 637
[12] Eley D D, Pines H, Weisz P B. Adv. Catal., 1992, 38:1-147
[13] 丁海洋(Ding H Y). 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2007
[14] Kádár M, Nagy Z, Karancsi T, Farsang G. Electrochim. Acta, 2001, 46: 3405-3414
[15] Rodgers J D, Jedral W, Bunce N I. Environ. Sci. Technol., 1999, 33: 1453-1457
[16] 冯玉杰(Feng Y J),李晓岩(Li X Y),龙宏(Long H).电化学技术在环境工程中的应用(Application of Electrochemical Technology on Environmental Engineering). 北京: 化学工业出版社(Beijing: Chemical Industry Press) 2002.76
[17] Zhu X P, Tong M P, Shi S Y, Zhao H Z, Ni J R. Environ. Sci. Technol., 2008, 42: 4914-4920
[18] Comninellis C. Electrochim. Acta, 1994, 39: 1857-1862
[19] Thanos J C G, Fritz H P, Wabner D. J. Appl. Electrochem., 1984, 14: 389-399
[20] Do J S, Yeh W C. J. Appl. Electrochem., 1996, 26: 673-678
[21] 朱锡海(Zhu X H), 陈卫国(Chen W G), 范娟(Fan J), 熊英键(Xiong Y J), 中山大学学报(Journal of Sun Yat-sen University), 1998, 37: 80-84
[22] Panizza M, Bocca C, Cerisola G. Water Res., 2000, 34: 2601-2605
[23] 吴迪(Wu D).吉林大学博士论文(Doctoral Dissertation of Jilin University), 2007
[24] Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Front. Environ. Sci. Eng. in China, 2009, 3: 129-151
[25] Zhuo Q F, Deng S B, Yang B, Huang J, Yu G. Environ. Sci. Technol., 2011, 45: 2973-2979
[26] Zhao G, Zhang Y, Lei Y, Lv B, Gao J, Zhang Y, Li D. Environ. Sci. Technol., 2010, 44: 1754-1759
[27] Jia J P, Yang J, Liao J, Wang W H, Wang Z J. Water Res., 1999, 33: 881-884
[28] Fan L, Zhou Y W, Yang W S, Chen G H, Yang F L. J. Hazard. Mater., 2006, 137: 1182-1188
[29] Cameselle C, Pazos M, Sanroman M A. Chemosphere, 2005, 60: 1080-1086
[30] 黄星发(Huang X F), 郑正 (Zheng Z), 王曦曦(Wang X X), 方彩霞 (Fang C X). 环境科学(Environmental Science),2009, 30(5): 1408-1413
[31] Niwa O. Bull. Chem. Soc. Jpn., 2005, 78(4): 555-571
[32] Tian Y, Mao L Q, Okajima T, Ohsaka T. Biosens. Bioelectron., 2005, 21: 557-564
[33] 顾庆超(Gu Q C). 新编化学用表(New Chemical Tables).南京:江苏教育出版社(Nan Jing: Jiangsu Education Press),1998
[34] Ferro S, de Battisti A. Electrochim. Acta, 2002, 47: 1641-1649
[35] Park J, Quaiserova-Mocko V, Peckova K, Galligan J J, Fink G D, Swain G M. Diamond Relat. Mater., 2006, 15: 761-772
[36] Levy-Clement C, Ndao N A, Katty A, Bernard M, Deneuville A, Comninellis C, Fujishima A. Diamond Relat. Mater., 2003, 12: 606-612
[37] Chen X M, Gao F R, Chen G H. J. Appl. Electrochem., 2005, 35: 185-191
[38] Chen X M, Chen G H, Gao F R, Yue P L. Environ. Sci. Technol., 2003, 37: 5021-5026
[39] Chen X M. Doctoral Dissertation of Hong Kong University of Science and Technology, 2002
[40] Tian Y, Chen X M, Shang C, Chen G H. J. Electrochem. Soc., 2006, 153: J80-J85
[41] Guo L, Chen G H. J. Electrochem. Soc., 2007, D657-D661
[42] Martinez-Huitle C A, Quiroz M A, Comninellis C, Ferro S, de Battisti A. Electrochim. Acta, 2004, 50: 949-956
[43] Panizza M, Kapalka A, Comninellis C. Electrochim. Acta, 2008, 53: 2289-2295
[44] Scialdone O, Galia A, Filardo G. Electrochim. Acta, 2008, 53: 7220-7225
[45] Zhao G H, Li P Q, Nong F Q, Li M F, Gao J X, Li D M. J. Phys. Chem. C, 2010, 114: 5906-5913
[46] Qu J, Zhao X. Environ. Sci. Technol., 2008, 42: 4934-4939
[47] Liu L, Zhao G H, Wu M F, Lei Y Z, Geng R. J. Hazard. Mater., 2009, 168: 179-186
[48] 钱功明(Qian G M). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2007
[49] Ferreira M, Varela H, Torresi R M, Tremiliosi-Filho G. Electrochim. Acta, 2006, 52: 434-442
[50] Bejankiwar R, Lalman J A, Seth R, Biswas N. Water Res., 2005, 39: 4715-4724
[51] Sripriya R, Chandrasekaran M, Subramanian K, Asokan K, Noel M. Chemosphere, 2007, 69: 254-261
[52] 张招贤(Zhang Z X). 氯碱工业(Chlor-Alkali Industry), 2007, 1: 15-22
[53] Farida Y R, Zheng Y M, Nanayakkara K G N, Chen J P. Ind. Eng. Chem. Res., 2009, 48: 7466-7473
[54] Babu B R, Venkatesan P, Kanimozhi R, Basha C A. J. Environ. Sci. Health. Part A, 2009, 44: 985-994
[55] Liu Y, Li L, Goel R. J. Hazard. Mater., 2009, 167: 959-965
[56] Cui Y H, Li X Y, Chen G H. Water Res., 2009, 43: 1968-1976
[57] 张琼(Zhang Q), 蔡传荣(Cai C R). 电子显微学报(Journal of Chinese Electron Microscopy Society), 2003, 22: 624-625
[58] Wang Y Q, Gu B, Xu W L. J. Hazard. Mater., 2009, 162: 1159-1164
[59] 王玲利(Wang L L), 彭乔(Peng Q). 研究进展(Research Progress), 2006, 35(8): 485-487
[60] 黄明君(Huang M J). 氯碱工业(Chlor-Alkali Industry), 1989, 10: 16-19
[61] Li M, Feng C P, Hu W W, Zhang Z Y, Sugiura N. J. Hazard. Mater., 2009, 162: 455-462
[62] Feng Y J, Li X Y. Water Res., 2003, 37: 2399-2407
[63] Song Y S, Lee D Y, Kim B Y. Mater. Lett., 2004, 58: 817-823
[64] Murakami Y, Kondo T, Shimoda Y, Kaji H, Yahikozawa K, Takasu Y. J. Alloys Compd., 1996, 239: 111-113
[65] 冯玉杰(Feng Y J), 李晓岩(Li X Y). Collection of the 199th Meeting of the Electrochemical Society. Washington D C, 2001.25-29
[66] 冯玉杰(Feng Y J), 沈宏(Sheng H), 崔玉虹(Cui Y H). 分子催化(Journal of Molecular Catalysis, China), 2002, 16 (3): 104-109
[67] Hu J M, Meng H M, Zhang J Q, Cao C N. Corros. Sci., 2002, 44: 1655-1668
[68] Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A. J. Hazard. Mater., 2009, 167: 268-274
[69] Tahar N B, Savall A. Electrochim. Acta, 2009, 54: 4809-4816
[70] Liang C H, Huang N B. Mater. Chem. Phys., 2008, 111: 244-248
[71] Ye Z G, Meng H M, Chen D, Yu H Y, Huan Z S, Wang X D, Sun D B. Solid State Sci., 2008, 10: 346-354
[72] 张招贤(Zhang Z X). 钛电极工学(Titanium Electrode Engineering). 北京:冶金工业出版社(Beijing: Metallurgical Industry Press), 2000
[73] 崔成强(Cui C Q), 张瀛洲(Zhang Y Z). 无机化学学报 (Chinese Journal of Inorganic Chemistry), 1991, 7 (2): 165-168
[74] Karuppiah M T, Raju G B. Ind. Eng. Chem. Res., 2009, 48: 2149-2156
[75] Stucki S, Kztz R, Carcer B. J. Appl. Electrochem., 1991, 21: 99-104
[76] Stucki S, Kztz R, Carcer B. J. Appl. Electrochem., 1991, 21: 14-20
[77] Lassali T A F, Boodts J F C, Bulhoes L O S. J. Appl. Electrochem., 2000, 30: 625-634
[78] Meaney K L, Omanovic S. Mater. Chem. Phys., 2007, 105: 143-147
[79] Adams B, Tian M, Chen A. Electrochim. Acta, 2009, 54: 1491-1498
[80] Montilla F, Morallon E, de Battisti A, Vazquez J L. J. Phys. Chem. B, 2004, 108: 5036-5043
[81] CorreaLozano B, Comninellis C, DeBattisti A. J. Appl. Electrochem., 1997, 27: 970-974
[82] Chen A C, Nigro S. J. Phys. Chem. B, 2003, 107: 13341-13348
[83] Zhao G H, Cui X, Liu M C, Li P Q, Zhang Y G, Cao T C, Li H X, Lei Y Z, Liu L, Li D M. Environ. Sci. Technol., 2009, 43: 1480-1486
[84] Chen X M, Yao P D, Wang D H, Wu X Z. Chem. Eng. J., 2009, 147: 412-415
[85] Devilliers D, Dinh Thi M T, Mahe E, Le Xuan Q. Electrochim. Acta, 2003, 48: 4301-4309
[86] 蔡天晓(Cai T X), 鞠鹤(Ju H), 武宏让(Wu H R). 表面技术(Surface Technology), 2002, 31(5): 22-23
[87] Tong S P, Ma C A, Feng H. Electrochim. Acta, 2008, 53: 3002-3006
[88] 潘会波(Pang H B).稀有金属材料与工程(Rare Metal Material and Engineering),1990, 1: 56-58
[89] 姜妍妍(Jiang Y Y), 郭忠诚(Guo Z C), 曹梅(Cao M), 陈步明(Cheng B M). 表面技术(Surface Technology), 2010, 39(4): 99-102
[90] Ciriaco L, Anjo C, Pacheco M J, Lopes A, Correia J. Electrochim. Acta, 2009, 54: 1464-1472
[91] Tan C, Xiang B, Li Y, Fang J, Huang M. Chem. Eng. J., 2010, 166: 15-21
[92] Liu H L, Liu Y, Zhang C, Shen R S. J. Appl. Electrochem., 2008, 38: 101-108
[93] Liu Y, Liu H L. Electrochim. Acta, 2008, 53: 5077-5083
[94] Andrade L S, Ruotolo L A M, Rocha R C, Bocchi N, Biaggio S R, Iniesta J, Garcia-Garcia V, Montiel V. Chemosphere, 2007, 66: 2035-2043
[95] Ghasemi S, Mousavi M F, Shamsipur M. Electrochim. Acta, 2007, 53: 459-467
[96] Cui Y, Li X, Chen G. Water Res., 2009, 43: 1968-1976
[97] Kawasaki S, Motoyama S, Tatsuta T, Tsuji O, Okamura S, Shiosaki T. Jpn. J. Appl. Phys. Part 1, 2004, 43: 6562-6566
[98] Shieh D T, Hwang B J. Electrochim. Acta, 1993, 38: 2239-2246
[99] Yoo Y R, Chang H Y, Jang S G, Nam H S, Kim Y S. Corro. Sci. Technol., 2007, 6: 44-49
[100] Hu J M, Zhang J Q, Cao C N. Int. J. Hydrogen Energy, 2004, 29: 791-797
[101] Jeong S J, Xia G, Kim B H, Shin D O, Kwon S H, Kang S W, Kim S O. Adv. Mater., 2008, 20: 1898-1904
[102] Hu J M, Meng H M, Zhang J Q, Cao C N. Corros. Sci., 2002, 44: 1655-1668
[103] Clifford W W, Rudd E. J. Proceedings of the Symposium on Energy and Electrochemical Processing for a Cleaner Environment, 1998
[104] Cui X, Zhao G H, Lei Y Z, Li H X, Li P Q, Liu M C. Mater. Chem. Phys., 2009, 113: 314-321
[1] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[2] 方莉, 贺进禄. 无酶葡萄糖传感器[J]. 化学进展, 2015, 27(5): 585-593.
[3] 王颖,牛军峰,张哲贇,隆兴兴. 超声-光催化降解水中有机污染物*[J]. 化学进展, 2008, 20(10): 1621-1627.
[4] 刘迎,魏荣卿,魏军,刘晓宁. 高分子量聚L-乳酸热降解回收L-丙交酯*[J]. 化学进展, 2008, 20(10): 1588-1594.
[5] 郑尧,周嵬,冉然,邵宗平. 钙钛矿型固体氧化物燃料电池阳极材料*[J]. 化学进展, 2008, 20(0203): 413-421.
[6] 宋杰,吴启辉,董全峰,郑明森,吴孙桃,孙世刚. 全固态薄膜锂离子电池*[J]. 化学进展, 2007, 19(01): 66-73.
[7] 刘江. 直接碳氢化合物固体氧化物燃料电池[J]. 化学进展, 2006, 18(0708): 1026-1033.
[8] 张文强,于波,张平,陈靖,徐景明. 固体氧化物燃料电池阳极材料研究及其在高温水电解制氢方面的应用[J]. 化学进展, 2006, 18(06): 832-840.
[9] 黄美荣 李新贵 李圣贤. 聚萘二胺的合成及其对重金属离子的高效反应吸附*[J]. 化学进展, 2005, 17(02): 299-309.
[10] 詹豪强. 偶氮染料结构、光稳定性和光化学降解机理研究[J]. 化学进展, 1998, 10(04): 415-.