English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 598-605 前一篇   后一篇

• 综述与评论 •

体外电化学测试对镁合金体内降解行为的预测

王佳力1, 唐键1, 张鹏1, 王珏1, 李扬德2, 秦岭1   

  1. 1. 中国科学院深圳先进技术研究院 生物医学与健康工程研究所转化医学研究与发展中心 深圳 518055;
    2. 东莞宜安科技股份有限公司 东莞 523000
  • 收稿日期:2011-08-01 修回日期:2011-12-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    广东省中国科学院全面战略合作项目(No.2010B090300076)、省部产学研结合科技创新平台项目(No.2010B091000017)、广东省产学研项目(No.2011A090100004);生物可降解镁合金及相关植入器件创新研发团队项目(No.201001C0104669453)资助

Indication of Electrochemical Measurements of Magnesium Alloys in vitro for Their Degradation Behavior in vivo

Wang Jiali1, Tang Jian1, Zhang Peng1, Wang Jue1, Li Yangde2, Qin Ling1   

  1. 1. Centre for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
    2. DongGuan EONETC Co., Ltd, Dongguan 523000, China
  • Received:2011-08-01 Revised:2011-12-01 Online:2012-04-24 Published:2012-02-08
可生物降解镁合金因同时具有优良的生物相容性和力学性能,在生物医学界显示出其作为新型骨科内植入物的巨大潜在优势和市场前景。目前,作为制约镁合金医用产业化的关键因素,即过快的降解速率已经成为研究重点。本文回顾了体外电化学测试技术对镁合金抗腐蚀性能的研究,并分析了模拟腐蚀体系对镁合金腐蚀行为的影响;同时评估了电化学测试方法作为快速有效预测镁合金体内降解性能前期分析手段的可行性与局限性。最后,对如何发展更合理的体外电化学测试技术来预测镁合金体内降解提出了可能的解决方法及构思。
As a novel orthopaedic implants in biomedical fields, biodegradable magnesium and its alloys have shown great potential and advantages due to their excellent biocompatibility and mechanical properties. The key factor to limit their further industrialization in the medical field is the rapid degradation behavior, which has become the focus of many researchers. In this paper, the research of corrosion resistance of magnesium-based alloys was summarized based on electrochemical measurements in vitro, and the effects of simulated corrosion system in vitro on corrosion behavior of magnesium and its alloys were also analyzed. Moreover, feasibility and limitation of the electrochemical methods as the fast and efficient indication of degradation behavior of magnesium alloys in vivo is evaluated. Finally, possible means and perspectives for more logic indication of degradation behavior of magnesium alloys in vivo are also proposed.
Contents
1 Introduction
2 Electrochemical measurements in vitro
2.1 Electrochemical corrosion mechanisms of magnesium
2.2 Evaluation of corrosion resistance using electrochemical measurements
2.3 Feasibility of electrochemical results for indication of corrosion behavior of magnesium and its alloys in vivo
3 Outlook

中图分类号: 

()
[1] Evans F G. Anat. Rec., 1976, 185: 1-12
[2] Staiger M P, Pietak A M, Huadmai J, Dias G. Biomaterials, 2006, 27: 1728-1734
[3] Han Y, Feng A L. J. Alloys Compd., 2010, 504: 585-593
[4] Witte F, Hort N, Vogt C, Cohen S, Kainer K U, Willumeit R, Feyerabend F. Curr. Opin. Solid State Mater. Sci., 2008, 12: 63-72
[5] Lambotte A. Bull. Mém. Soc. Nat. Chir., 1932, 28: 1325-1334
[6] Sealy M P, Guo Y B. J. Mech. Behav. Biomed., 2010, 3: 488-496
[7] Lim C S, Yong J, Toh K M. J. Mech. Med. Biol., 2007, 7: 89-100
[8] Birbilis N, Kirkland N T, Lespagnol J, Staiger M P. Corros. Sci., 2010, 52: 287-291
[9] Guan S K, Wang J, Wang L G, Zhu S J, Ren C X, Hou S S. J. Mater. Sci-Mater. Med., 2010, 21: 2001-2008
[10] Li Y C, Hodgson P D, Wen C E. J. Mater. Sci., 2011, 46: 365-371
[11] Zheng Y F, Gu X N, Zhou W R, Cheng Y, Wei S C, Zhong S P, Xi T F, Chen L J. Acta Biomater., 2010, 6: 4605-4613
[12] Zhou J, Huan Z G, Leeflang M A, Fratila-Apachitei L E, Duszczyk J. J. Mater. Sci-Mater. Med., 2010, 21: 2623-2635
[13] Liu B, Zheng Y F. Acta Biomater., 2011, 7: 1407-1420
[14] Mitchell T, Diplas S, Tsakiropoulos P. Philos. Mag., 2005, 85: 2733-2756
[15] Guan S K, Gao J H, Chen J, Wang L G, Zhu S J, Hu J H, Ren Z W. Appl. Surf. Sci., 2011, 257: 2231-2237
[16] Virtanen S, Turhan M C, Lynch R, Killian M S. Electrochim. Acta, 2009, 55: 250-257
[17] Zheng Y F, Gu X N, Zheng W, Cheng Y. Acta Biomater., 2009, 5: 2790-2799
[18] Xu X H, Lu P, Cao L, Liu Y, Wu X F. J. Biomed. Mater. Res. B, 2011, 96B: 101-109
[19] Chu P K, Liu C G, Xin Y C, Tian X B, Zhao J. J. Vac. Sci. Technol. A, 2007, 25: 334-339
[20] Cheng F T, Ng W F, Wong M H. Mater. Chem. Phys., 2010, 119: 384-388
[21] Fan J M, Li Q, Kang W, Zhang S Y, Chen B. Mater. Corros., 2009, 60: 438-443
[22] Cheung K M C, Wong H M, Yeung K W K, Lam K O, Tam V, Chu P K, Luk K D K. Biomaterials, 2010, 31: 2084-2096
[23] Banerjee P C, Raman R K S, Durandet Y, McAdam G. Corros. Sci., 2011, 53: 1505-1514
[24] Witte F, Fischer J, Nellesen J, Crostack H A, Kaese V, Pisch A, Beckmann F, Windhagen H. Biomaterials, 2006, 27: 1013-1018
[25] Zeng R C, Dietzel W F, Witte F, Hort N, Blawert C. Adv. Biomat., 2008, 108: B3-B14
[26] Song G, Atrens A. Adv. Eng. Mater., 2007, 9: 177-183
[27] Rosalbino F, De Negri S, Saccone A, Angelini E, Delfino S. J. Mater. Sci-Mater. Med., 2010, 21: 1091-1098
[28] Jamesh M, Kumar S, Narayanan T S N S. Corros. Sci., 2011, 53: 645-654
[29] Ghoneim A A, Fekry A M, Ameer M A. Electrochim. Acta, 2010, 55: 6028-6035
[30] Ballerini G, Bardi U, Bignucolo R, Ceraolo G. Corros. Sci., 2005, 47: 2173-2184
[31] Song G L, Song S Z. Adv. Eng. Mater., 2007, 9: 298-302
[32] Li M H, Chen Q A, Zhang W J, Hu W Y, Su Y. J. Mater. Sci., 2011, 46: 2365-2369
[33] Rack H J, Qazi J I. Mat. Sci. Eng. C-Bio. S., 2006, 26: 1269-1277
[34] Wong H M, Yeung K W K, Lam K O, Tam V, Chu P K, Luk K D K, Cheung K M C. Biomaterials, 2010, 31: 2084-2096
[35] Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. Biomaterials, 2009, 30: 484-498
[36] Mueller W D, Nascimento M L, Mele M F L D. Acta Biomater., 2010, 6: 1749-1755
[37] Quach N C, Uggowitzer P J, Schmutz P. C. R. Chim., 2008, 11: 1043-1054
[38] Song Y W, Shan D Y, Chen R S, Zhang F, Han E H. Mat. Sci. Eng. C-Bio. S., 2009, 29: 1039-1045
[39] Wang Y S, Lim C S, Lim C V, Yong M S, Teo E K, Moh L N. Mat. Sci. Eng. C-Bio. S., 2011, 31: 579-587
[40] Mueller W D, Mele M F L D, Nascimento M L, Zeddies M. J. Biomed. Mater. Res. A, 2009, 90A: 487-495
[41] Willumeit R, Fischer J, Feyerabend F, Hort N, Bismayer U, Heidrich S, Mihailova B. Acta Biomater., 2011, 7: 2704-2715
[42] Seuss F, Seuss S, Turhan M C, Fabry B, Virtanen S. J. Biomed. Mater. Res. B, 2011, 99B: 276-281
[43] Tie D, Feyerabend F, Hort N, Willumeit R, Hoeche D. Adv. Biomat., 2010, 12: B699-B704
[1] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[2] 邵建文, 杨付超, 郭志光. 仿生超疏油材料在苛刻工况条件下的应用[J]. 化学进展, 2018, 30(12): 2003-2011.
[3] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[4] 郑柳春, 李春成*, 肖耀南, 张博, 王召栋. 可生物降解抗污材料[J]. 化学进展, 2017, 29(8): 824-832.
[5] 顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28(5): 737-743.
[6] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[7] 卢琳, 李晓刚, 高瑾. 有机涂层/金属界面腐蚀的微区电化学[J]. 化学进展, 2011, 23(8): 1618-1626.
[8] 罗丽珠, 赖新春, 汪小琳. 我国铀表面科学研究进展[J]. 化学进展, 2011, 23(7): 1322-1328.
[9] 田如锦. PEMFC金属双极板及其表面改性的研究进展[J]. 化学进展, 2009, 21(0708): 1687-1692.
[10] 孔德生,万立骏,陈慎豪. 电化学STM技术在金属腐蚀科学中的应用及研究进展*[J]. 化学进展, 2004, 16(02): 204-.
[11] 杨学耕,陈慎豪,马厚义,全贞兰,李德刚. 金属表面自组装缓蚀功能分子膜*[J]. 化学进展, 2003, 15(02): 123-.