English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 589-597 前一篇   后一篇

• 综述与评论 •

细胞色素b5-蛋白质相互作用研究

林英武   

  1. 南华大学化学化工学院 衡阳 421001
  • 收稿日期:2011-08-01 修回日期:2011-11-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金青年基金项目(No.21101091)、南京大学配位化学国家重点实验室开放基金项目、湖南省自然科学基金青年基金项目(No.11JJ4017);湖南省教育厅青年基金项目(No.11B05)资助

Cytochrome b5-Protein Interactions

Lin Yingwu   

  1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
  • Received:2011-08-01 Revised:2011-11-01 Online:2012-04-24 Published:2012-02-08
蛋白质-蛋白质相互作用在生命过程中发挥至关重要的作用,特别是血红素类蛋白。细胞色素b5(Cyt b5)是血红素蛋白的一个典型代表,在生物体内通过多种蛋白质-蛋白质相互作用来执行其生物功能。目前所揭示的与Cyt b5相关的蛋白质相互作用包括:细胞色素b5-细胞色素b5还原酶,细胞色素b5-细胞色素P450,细胞色素b5-细胞色素c,细胞色素b5-肌红蛋白或血红蛋白,细胞色素b5-融合蛋白(谷胱甘肽S-转移酶GST和绿色荧光蛋白GFP)和细胞色素b5-转运蛋白(蔗糖转运蛋白SUT1和山梨醇转运蛋白SOT6)等。同一蛋白能与众多不同蛋白相互作用的事实,使我们认识到某些特定蛋白的生物学重要性。另一方面,研究同一蛋白与不同蛋白质间的相互作用将会进一步加深我们对蛋白质结构与功能关系的理解,以及指导新颖蛋白的理性设计与最终应用。
Protein-protein interactions play crucial roles in biological processes, especially for heme proteins. Cytochrome b5 (Cyt b5) is a typical heme protein, which functions in vivo through various protein-protein interactions. As reviewed herein, the currently revealed interactions associated with Cyt b5 include Cyt b5-Cyt b5 reductase, Cyt b5-Cyt P450, Cyt b5-Cyt c, Cyt b5-myoglobin or hemoglobin, Cyt b5-fusion proteins (glutathione S-transferase, GST, and green fluorescence protein, GFP), and Cyt b5-tansporters (sucrose transporter, SUT1, and sorbital transporter, SOT6), etc. The fact that a single protein can interact with various proteins makes us realize the biological importance of some particular proteins. On the other hand, the study of a single protein interacting with various proteins will further our understanding of protein structure-function relationship, as well as guide rational design of novel proteins for ultimate applications.
Contents
1 Introduction
2 Cytochrome b5
2.1 Structure
2.2 Function
3 Cytochrome b5-protein interactions
3.1 Cytochrome b5-cytochrome b5 reductase
3.2 Cytochrome b5-cytochrome P450
3.3 Cytochrome b5-cytochrome c
3.4 Cytochrome b5-myoglobin or hemoglobin
3.5 Cytochrome b5-fusion protein
3.6 Cytochrome b5-transporter
4 Conclusions and outlook

中图分类号: 

()
[1] Golemis E. Protein-Protein Interactions. 北京: 中国农业出版社(Beijing: China Agriculture Press), 2004
[2] Garner A L, Janda K D. Curr. Top. Med. Chem., 2011, 11: 258-280
[3] 林英武(Lin Y W), 黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794-800
[4] 林英武(Lin Y W), 黄仲贤(Huang Z X). 世界科技研究与发展(World Science-Technology R&D), 2006, 28(1): 8-13
[5] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203-1211
[6] Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101: 3047-3080
[7] Stroebel D, Choquet Y, Popot J L, Picot D. Nature, 2003, 426: 413-418
[8] Kurisu G, Zhang H, Smith J L, Cramer W A. Science, 2003, 302: 1009-1014
[9] Kokhan O, Wraight C A, Tajkhorshid E. Biophys. J., 2010, 99: 2647-2656
[10] Cooley J W. Biochim. Biophys. Acta, 2010, 1797: 1842-1848
[11] Moreira I S, Fernandes P A, Ramos M J. Proteins, 2007, 68: 803-812
[12] Vergeres G, Waskell L. Biochimie, 1995, 77: 604-620
[13] Durley R C, Mathews F S. Acta Crystallogr. D, 1996, 52: 65-76
[14] Wu J, Gang J H, Xia Z X, Wang Y H, Wang W H, Xue L L, Xie Y, Huang Z X. Proteins, 2000, 40: 249-257
[15] Falzone C J, Mayer M R, Whiteman E L, Moore C D, Lecomete J T. Biochemistry, 1996, 35: 6519-6526
[16] Chudaev M V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2001, 66: 667-681
[17] Lin Y W, Wang Z H, Ni F Y, Huang Z X. Protein J., 2008, 27: 197-203
[18] Lin Y W, Nie C M, Liao L F. J. Mol. Struct. (Theochem), 2009, 910: 154-162
[19] Lin Y W, Ying T L, Liao L F. J. Mol. Model., 2011, 17: 971-978
[20] Wang W H, Lu J X, Yao P, Xie Y, Huang Z X. Protein Eng., 2003, 16: 1047-1054
[21] Lin Y W, Ying T L, Liao L F. Chin. Chem. Lett., 2009, 20: 631-634
[22] Barker P D, Ferrer J C, Mylrajan M, Loehr T M, Feng R, Konishi Y, Funk W D, MacGillivray R T, Mauk A G. Proc. Natl. Acad. Sci. USA, 1993, 90: 6542-6546
[23] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. Chembiochem, 2005, 6: 1356-1359
[24] Lin Y W, Wu Y M, Liao L F, Nie C M. J. Mol. Model., 2011, doi: 10.1007/s00894-011-1189-y
[25] Schenkman J B, Jansson I. Pharmacol. Therapeut., 2003, 97: 139-152
[26] Davydov D R. Trends Biochem. Sci., 2001, 26: 155-160
[27] Sligar S G, Egeberg K D, Sage J T, Morikis D, Champion P M. J. Am. Chem. Soc., 1987, 109: 7896-7897
[28] Rodríguez J C, Rivera M. Biochemistry, 1998, 37: 13082-13090
[29] Avila L, Huang H W, Rodríguez J C, Moenne-Loccoz P, Rivera M. J. Am. Chem. Soc., 2000, 122: 7618-7619
[30] Avila L, Huang H W, Damaso C O, Lu S, Moenne-Loccoz P, Rivera M. J. Am. Chem. Soc., 2003, 125: 4103-4110
[31] Wang W H, Wang Y H, Xie Y, Huang Z X. Chem. Lett., 2002, 674-675
[32] Ihara M, Shintaku M, Takahashi S, Ishimori K, Morishima I. J. Am. Chem. Soc., 2000, 122: 11535-11536
[33] Yanagi T. Biochemistry, 1977, 16: 2725-2730
[34] Bewley M C, Marohnic C C, Barber M J. Biochemistry, 2001, 40: 13574-13582
[35] Strittmatter P, Hackett C S, Korza G, Ozols J. J. Biol. Chem., 1990, 265: 21709-21713
[36] Kawano M, Shirabe K, Nagai T, Takeshita M. Biochem. Biophys. Res. Commun., 1998, 245: 666-669
[37] Shirabe K, Nagai T, Yubisui T, Takeshita M. Biochim. Biophys. Acta, 1998, 1384: 16-32
[38] Bando S, Takano T, Yubisui T, Shirabe K, Takeshita M, Nakagawa A. Acta Cryst. D, 2004, 60: 1929-1934
[39] Asada T, Nagase S, Nishimoto K, Koseki S. J. Mol. Liquid., 2009, 147: 139-144
[40] Im S C, Waskell L. Arch. Biochem. Biophys., 2011, 507: 144-153
[41] Clarke T A, Im S C, Bidwai A, Waskell L. J. Biol. Chem., 2004, 279: 36809-36818
[42] Zhang H, Im S C, Waskell L. J. Biol. Chem., 2007, 282: 29766-29776
[43] Kaspera R, Naraharisetti S B, Evangelista E A, Marciante K D, Psaty B M, Totah R A. Biochem. Pharmacol., 2011, 82: 681-691
[44] Locuson C W, Wienkers L C, Jones J P, Tracy T S. Drug Metab. Dispos., 2007, 35: 1174-1181
[45] Gao Q, Doneanu C E, Shaffer S A, Adman E T, Goodlett D R, Nelson S D. J. Biol. Chem., 2006, 281: 20404-20417
[46] Kumar S, Davydov D R, Halpert J R. Drug Metab. Dispos., 2005, 33: 1131-1136
[47] Guzov V M, Houston H L, Murataliev M B, Walker F A, Feyereisen R. J. Biol. Chem., 1996, 271: 26637-26645
[48] Noble M A, Girvan H M, Smith S J, Murataliev M, Guzov V M, Feyereisen R, Munro A W. Drug Metab. Rev., 2007, 39: 599-617
[49] Vergères G, Waskell L. J. Biol. Chem., 1992, 267: 12583-12591
[50] Bushnell G W, Louie G V, Brayer G D. J. Mol. Biol., 1990, 214: 585-595
[51] Salemme F R. J. Mol. Biol., 1976, 102: 563-568
[52] Mauk M R, Mauk A G, Weber P C, Matthew J B. Biochemistry, 1986, 25: 7085-7091
[53] Rodgers K K, Pochapsky T C, Sligar S G. Science, 1988, 240: 1657-1659
[54] Burch A M, Rigby S E J, Funk W D, MacGillivray R T, Mauk M R, Mauk A G, More G R. Science, 1990, 247: 831-833
[55] Eltis L D, Herbert R G, Barker P D, Mauk A G, Northrup S H. Biochemistry, 1991, 30: 3663-3674
[56] Northrup S H, Thomasson K A, Miller C M, Barker P D, Eltis L D, Guillemette J G, Inglis S C, Mauk A G. Biochemistry, 1993, 32: 6613-6623
[57] Mauk A G, Mauk M R, Moore G R, Northrup S H. J. Bioenerg. Biomemb., 1995, 27: 311-330
[58] Durham B, Fairris J L, McLean M, Millett F, Scott J R, Sligar S G, Willie A. J. Bioenerg. Biomemb., 1995, 27: 331-340
[59] Sun Y L, Wang Y H, Yan M M, Sun B Y, Xie Y, Huang Z X, Jiang S K, Wu H M. J. Mol. Biol., 1999, 285: 347-359
[60] Qian C, Yao Y, Ye K, Wang J, Tang W, Wang W, Lu J, Xie Y, Huang Z. Protein Sci., 2001, 10: 2451-2459
[61] Wu Y, Wang Y, Qian C, Lu J, Li E, Wang W, Lu J, Xie Y, Wang J, Zhu D, Huang X, Tang W. Eur. J. Biochem., 2001, 268: 1620-1630
[62] Wu J, Wang Y H, Gan J H, Wang W H, Sun B Y, Huang Z X, Xia Z X. Chin. J. Chem., 2002, 20: 1125-1234
[63] Ren Y, Wang W H, Wang Y H, Case M, Qian W, McLendon G, Huang Z X. Biochemistry, 2004, 43: 3527-3536
[64] Banci L, Bertini I, Felli I C, Krippahi L, Kubicek K, Moura J J, Rosato A. J. Biol. Inorg. Chem., 2003, 8: 777-786
[65] Ying T, Wang Z H, Lin Y W, Xie J, Tan X, Huang Z X. Chem. Commun., 2009, 30: 4512-4514
[66] Lin Y W, Liao L F. Comput. Theo. Chem., 2011, 976: 130-134
[67] Wan D, Liao L F, Zhao M M, Wu M L, Wu Y M, Lin Y W. J. Mol. Model., 2012, 18: 1009-1013
[68] Periyakaruppan A, Sarkar S, Ravichandran P, Sadanandan B, Sharma C S, Ramesh V, Hall J C, Thomas R. Arch. Toxicol., 2009, 83: 595-600
[69] Mauk M R, Mauk A G. Biochemistry, 1982, 21: 4730-4734
[70] Livingston D J, McLachlan S J, La Mar G N, Brown W D. J. Biol. Chem., 1985, 260: 15699-15707
[71] Stayton P S, Fisher M T, Sligar S G. J. Biol. Chem., 1988, 263: 13544-13548
[72] Nocek J M, Sishta B P, Cameron J C, Mauk A G, Hoffman B M. J. Am. Chem. Soc., 1997, 119: 2146-2155
[73] Naito N, Huang H, Sturgess W, Neck J M, Hoffman B M. J. Am. Chem. Soc., 1998, 120: 11256-11262
[74] Liang Z X, Jiang M, Ning Q, Hoffman B M. J. Biol. Inorg. Chem., 2002, 7: 580-588
[75] Liang Z X, Nocek J M, Huang K, Hayes T R, Kurnikov I V, Beratan D N, Hoffman B M. J. Am. Chem. Soc., 2002, 124: 6849-6859
[76] Wheeler K E, Nocek J M, Cull D A, Yatsunyak L, Rosenzweig A C, Hoffman B M. J. Am. Chem. Soc., 2007, 129: 3906-3917
[77] Xiong P, Nocek J M, Griffin A K, Wang J, Hoffman B M. J. Am. Chem. Soc., 2009, 131: 6938-6939
[78] Nocek J M, Knutson A K, Xiong P, Co N P, Hoffman B M. J. Am. Chem. Soc., 2010, 132: 6165-6175
[79] Xiong P, Nocek J M, Vura-Weis J, Lockard J V, Wasielewski M R, Hoffman B M. Science, 2010, 330: 1075-1078
[80] Hultquist D E, Passon P G. Nat. New Biol., 1971, 229: 252-254
[81] Johnson K S, Harrison G B L, Lightowlers M W, O’Hoy K L, Gougle W G, Dempster R P, Lawrence S B, Vinton J G, Heath D D, Richard M D. Nature, 1989, 338: 585-587
[82] Lin Y W, Zhao D X, Wang Z H, Yu W H, Huang Z X. Protein Expr. Purif., 2006, 45: 352-358
[83] Yantsevich A V, Harnostai I N, Lukashevich O P. Biochemistry(Mosc), 2007, 72: 77-83
[84] Yantsevich A V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2009, 74: 518-527
[85] Yantsevich A V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2009, 74: 862-873
[86] Yantsevich A V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2008, 73: 1096-1107
[87] Fan R C, Peng C C, Xu Y H, Wang X F, Li Y, Shang Y, Du S Y, Zhao R, Zhang X Y, Zhang L Y, Zhang D P. Plant Physiol., 2009, 150: 1180-1901
[88] Cao Z, Maurousset L, Lemoine R, Yoo S D, van Nocker S, Loescher W. Plant Physiol., 2003, 131: 1566-1575
[89] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855-862
[90] Lin Y W. Proteins, 2011, 79: 679-684
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[7] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[8] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[9] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[10] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[11] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[12] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[15] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
阅读次数
全文


摘要

细胞色素b5-蛋白质相互作用研究