English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 577-588 前一篇   后一篇

• 综述与评论 •

蛋白质功能化新策略:嵌入非天然氨基酸

张春秋, 罗全, 刘俊秋, 沈家骢   

  1. 吉林大学超分子结构与材料国家重点实验室 长春 130012
  • 收稿日期:2011-08-01 修回日期:2011-12-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.91027023,20874036,20921003,21004028)、国家杰出青年基金项目(No.20725415);国家重点基础研究发展计划(973)项目(No.2007CB808006)资助

New Strategies for Protein Functionalization: Inserting Unnatural Amino Acids into Proteins

Zhang Chunqiu, Luo Quan, Liu Junqiu, Shen Jiacong   

  1. State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
  • Received:2011-08-01 Revised:2011-12-01 Online:2012-04-24 Published:2012-02-08
天然蛋白质由20种天然氨基酸组成,这些蛋白质的构筑基元包含功能基团:羧基、氨基、巯基、硫醚、羟基、碱性胺、烷基和芳基。然而,这些有限的功能基团却不足以完成生物体内所有的生物学功能。为了更好地让生命的体现者--蛋白质完成更加精确和多样的生物学功能,自然界会对蛋白质进行翻译后的修饰,包括:磷酸化,甲基化,乙酰化或者羟基化,甚至在某些情况下,进化出一种新型的翻译机制以便插入硒代半胱氨酸或者吡咯霉素。受此启发,生物化学家发展出各种生物或化学方法来改变或插入新的蛋白质构筑基元,使天然蛋白质完成其相应的生物学功能或者使其具有某些特殊的性质,甚至是创造一种新酶。该文将简单介绍这些蛋白质修饰策略以及该领域的最新进展。
Although 20 natural amino acids served as the building blocks of proteins contain several functional groups including carboxylic acids, amides, thiols, thiol ethers, alcohols, basic amines, and alkyl and aryl groups, they are still unable to carry out all of the natural functions. In order to improve the precision and diversity of protein to perform the biological processes, organisms have provided a variety of posttranslational modifications including phosphorylation, methylation, acetylation, and hydroxylation, even evolved novel translational machinery to incorporate either selenocysteine or pyrrolysine. Inspired by biological system, many biological or chemical methods have been developed to alter or insert new building blocks into protein, which enable protein to perform relevant functions or have some special properties, even create a new kind of enzyme. Here, we give a brief overview of the strategies for protein modification and the latest progress in this field.
Contents
1 Introduction
2 Chemical approaches
2.1 Chemical modification of proteins
2.2 Chemical synthesis
2.3 Semisynthesis
3 Biosynthetic approaches in vitro
4 Biosynthetic approaches in vivo
4.1 Incorporating unnatural amino acids into proteins using auxotrophic bacterial strains
4.2 Expanding genetic code
5 Functionalization and applications
5.1 'Click’ chemistry
5.2 Alkyne and azide functionalization
5.3 Keto and aldehyde functionalization
5.4 Alkene functionalization
5.5 Other functional unnatural amino acids
6 Conclusion and prospects

中图分类号: 

()
[1] Liu J Q, Jiang M S, Luo G M, Yan G L, Shen J C. Biotechnol. Lett., 1998, 20: 693-696
[2] Levine H L, Nakagawa Y, Kaiser E T. Biochem. Biophys. Res. Commun., 1977, 76: 64-70
[3] Levine H L, Kaiser E T. J. Am. Chem. Soc., 1978, 100: 7670-7677
[4] Kaiser E T, Lawrence D S. Science, 1984, 226: 505-511
[5] Chen Y, Ebright Y W, Ebright R H. Science, 1994, 265: 90-92
[6] Wang Q, Chan T R, Hilgraf R, Fokin V V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192-3193
[7] Geoghegan K F, Stroh J G. Bioconjugate Chem., 1992, 3: 138-146
[8] Merrifield R B. J. Am. Chem. Soc., 1963, 85: 2149-2154
[9] Kent S B. Annu. Rev. Biochem., 1988, 57: 957-989
[10] Roy R S, Imperiali B. Protein Eng., 1997, 10: 691-698
[11] Hamachi I, Eboshi R, Watanabe J I, Shinkai S. J. Am. Chem. Soc., 2000, 122: 4530-4531
[12] Nestor J J, Ho T L, Simpson R A, Horner B L, Jones G H, McRae G I, Vickery B H. J. Med. Chem., 1982, 25: 795-801
[13] Nestor J J, Tahilramani R, Ho T L, McRae G I, Vickery B H. J. Med. Chem., 1988, 31: 65-72
[14] Liu K L, He B L, Xiao S B, Xia Q M, Fang X, Wang Z Y. Int. J. Pept. Protein Res., 1990, 35: 157-160
[15] Bilgicer B, Fichera A, Kumar K. J. Am. Chem. Soc., 2001, 123: 4393-4399
[16] Schnolzer M, Kent S B. Science, 1992, 256: 221-225
[17] Rose K. J. Am. Chem. Soc., 1994, 116: 30-33
[18] Englebretsen D R, Garnham B G, Bergman D A, Alewood P F. Tetrahedron Lett., 1995, 36: 8871-8874
[19] Baca M, Muir T W, Schnoelzer M, Kent S B H. J. Am. Chem. Soc., 1995, 117: 1881-1887
[20] Liu C F, Tam J P. J. Am. Chem. Soc., 1994, 116: 4149-4153
[21] Liu C F, Tam J P. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 6584-6588
[22] Schumacher T N, Mayr L M, Minor D L, Milhollen M A, Burgess M W, Kim P S. Science, 1996, 271: 1854-1857
[23] Eckert D M, Malashkevich V N, Hong L H, Carr P A, Kim P S. Cell, 1999, 99: 103-115
[24] Schnolzer M, Kent S B H. Science, 1992, 256: 221-225
[25] Han S, Viola R E. Protein Pept. Lett., 2004, 11: 107-114
[26] Tam J P, Xu J, Eom K D. Pept. Sci., 2001, 60 : 194-205
[27] Wallace C J, Clark-Lewis I. J. Biol. Chem., 1992, 267: 3852-3861
[28] Wallace C J. FASEB J., 1993, 7: 505-515
[29] Wuttke D S, Gray H B, Fisher S L, Imperiali B. J. Am. Chem. Soc., 1993, 115: 8455-8456
[30] Wong C H, Wang K T. Experientia, 1991, 47: 1123-1129
[31] Bongers J, Lambros T, Liu W, Ahmad M, Campbell R M, Felix A M, Heimer E P. J. Med. Chem., 1992, 35: 3934-3941
[32] Bongers J, Liu W, Lambros T, Breddam K, Campbell R M, Felix A M, Heimer E P. Int. J. Pept. Protein Res., 1994, 44: 123-129
[33] Nakatsuka T, Sasaki T, Kaiser E T. J. Am. Chem. Soc., 1987, 109: 3808-3810
[34] Abrahmsen L, Tom J, Burnier J, Butcher K A, Kossiakoff A, Wells J A. Biochemistry, 1991, 30: 4151-4159
[35] Chapeville F, Lipmann F, von Ehrenstein G, Weisblum B, Ray W J, Benzer S. Proc. Natl. Acad. Sci. USA, 1962, 48: 1086-1092
[36] Heckler T G, Zama Y, Naka T, Hecht S M. J. Biol. Chem., 1983, 258: 4492-4495
[37] Roesser J R, Chorghade M S, Hecht S M. Biochemistry, 1986, 25: 6361-6365
[38] Heckler T G, Roesser J R, Xu C, Chang P I, Hecht S M. Biochemistry, 1988, 27: 7254-7262
[39] Noren C J, Anthony-Cahill S J, Griffith M C, Schultz P G. Science, 1989, 244: 182-188
[40] Miller J H, Ganem D, Lu P, Schmitz A. J. Mol. Biol., 1977, 109: 275-301
[41] Bossi L, Roth J R. Nature, 1980, 286: 123-127
[42] Kwok Y, Wong J T. Can. J. Biochem., 1980, 58: 213-218
[43] Bruce A G, Atkins J F, Wills N, Uhlenbeck O, Gesteland R F. Proc. Natl. Acad. Sci. USA, 1982, 79: 7127-7131
[44] Miller A, Albertini A. J. Mol. Biol., 1983, 164: 59-71
[45] Ayer D, Yarus M. Science, 1986, 231: 393-395
[46] Robertson S A, Ellman J A, Schultz P G. J. Am. Chem. Soc., 1991, 113: 2722-2729
[47] Kowal A K, Oliver J S. Nucleic Acids Res., 1997, 25: 4685-4689
[48] Forster A C, Tan Z, Nalam M N, Lin H, Qu H, Cornish V W, Blacklow S C. Proc. Natl. Acad. Sci. USA, 2003, 100: 6353-6357
[49] Sisido M, Hohsaka T. Appl. Microbiol. Biotechnol., 2001, 57: 274-281
[50] Hohsaka T, Sisido M. Nucleic Acids Symp. Ser., 2000, 44: 99-100
[51] Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M. Biochemistry, 2001, 40: 11060-11064
[52] Hutchison C A Ⅲ, Phillips S, Edgell M H, Gillam S, Jahnke P, Smith M. J. Biol. Chem., 1978, 253: 6551-6560
[53] Dalbadie-McFarland G, Cohen L W, Riggs A D, Morin C, Itakura K, Richards J H. Proc. Natl. Acad. Sci. USA, 1982, 79: 6409-6413
[54] Sigal I S, Harwood B G, Arentzen R. Proc. Natl. Acad. Sci. USA, 1982, 79: 7157-7160
[55] Winter G, Fersht A R, Wilkinson A J, Zoller M, Smith M. Nature, 1982, 299: 756-758
[56] Villafranca J E, Howell E E, Voet D H, Strobel M S, Ogden R C, Abelson J N, Kraut J. Science, 1983, 222: 782-788
[57] Craik C S, Roczniak S, Largman C, Rutter W J. Science, 1987, 237: 909-913
[58] Wells J A, Estell D A. Trends Biochem. Sci., 1988, 13: 291-297
[59] Jones P T, Dear P H, Foote J, Neuberger M S, Winter G. Nature, 1986, 321: 522-525
[60] Nardelli J, Gibson T J, Vesque C, Charnay P. Nature, 1991, 349: 175-178
[61] Desjarlais J R, Berg J M. Proteins Struct. Funct. Genet., 1992, 12: 101-104
[62] Nardelli J, Gibson T, Charnay P. Nucleic Acids Res., 1992, 20 : 4137-4144
[63] Choo Y, Klug A. Proc. Natl. Acad. Sci. USA, 1994, 91: 11163-11167
[64] Isalan M, Choo Y, Klug A. Proc. Natl. Acad. Sci. USA, 1997, 94 : 5617-5621
[65] Isalan M, Klug A, Choo Y. Biochemistry, 1998, 37: 12026-12033
[66] Choo Y, Isalan M. Curr. Opin. Struct. Biol., 2000, 10: 411-416
[67] Wolfe S A, Nekludova L, Pabo C O. Annu. Rev. Biophys. Biomol. Struct., 2000, 29: 183-212
[68] Mitchell H K, Niemann C. J. Am. Chem. Soc., 1947, 69: 1232-1232
[69] Simpson M V, Farber E, Tarver H. J. Biol. Chem., 1950, 182: 81-90
[70] Richmond M H. Bacteriol. Rev., 1962, 26: 398-420
[71] Levine M, Tarver H. J. Biol. Chem., 1951, 192: 835-850
[72] Gross D, Tarver H. J. Biol. Chem., 1955, 217: 169-182
[73] Wang L, Schultz P G. Angew. Chem. Int. Ed., 2005, 44: 34-66
[74] Richmond M H. Biochem. J., 1959, 73: 261-264
[75] Cowie D B, Cohen G N, Bolton E T, de Robichon-Szulmajster H. Biochim. Biophys. Acta, 1959, 34: 39-46
[76] Rennert O M, Anker H S. Biochemistry, 1961, 13: 471-476
[77] Cohen G N, Cowie D B. C. R. Hebd. Seances Acad. Sci., 1957, 244: 680-683
[78] Cowie D B, Cohen G N. Biochim. Biophys. Acta, 1957, 26: 252-261
[79] Li J, Liu X M, Liu J Q. Chinese Science Bulletin, 2008, 53: 2454-2461
[80] Ge Y, Qi Z H, Liu J Q. Int. J. Biochem. Cell. Biol., 2009, 41: 900-906
[81] Yu H J, Liu J Q. Biochemical and Biophysical Research Communications, 2007, 358: 873-878
[82] Liu X M, Liu J Q. Angew. Chem. Int. Ed., 2009, 48: 2020-2023
[83] Ibba M, Kast P, Hennecke H. Biochemistry, 1994, 33: 7107-7112
[84] Ibba M, Hennecke H. FEBS Lett., 1995, 364: 272-275
[85] Sharma N, Furter R, Kast P, Tirrell D A. FEBS Lett., 2000, 467: 37-40
[86] Kirshenbaum K, Carrico S I, Tirrell A D. ChemBioChem, 2002, 3: 235-237
[87] Doring V, Mootz H D, Nangle L A, Hendrickson T L, de Crecy-Lagard V, Schimmel P, Marliere P. Science, 2001, 292: 501-504
[88] Liu D R, Magliery T J, Schultz P G. Chem. Biol., 1997, 4: 685-691
[89] Liu D R, Magliery T J, Pasternak M, Schultz P G. Proc. Natl. Acad. Sci. USA, 1997, 94: 10092-10097
[90] Wang L, Magliery T J, Liu D R, Schultz P G. J. Am. Chem. Soc., 2000, 122: 5010-5011
[91] Wang L, Schultz P G. Chem. Biol., 2001, 8: 883-890
[92] Wang L, Brock A, Herberich B, Schultz P G. Science, 2001, 292: 498-500
[93] Ai H W, Shen W J, Brustad E, Schultz P G. Angew. Chem. Int. Ed., 2009, 48: 1-4
[94] Neumann H, Slusarczyk A L, Chin J W. J. Am. Chem. Soc., 2010, 132: 2142-2144
[95] Deiters A, Cropp T A, Mukherji M, Chin J W, Anderson J C, Schultz P G. J. Am. Chem. Soc., 2003, 125: 11782-11783
[96] Edwards H, Schimmel P. Mol. Cell. Biol., 1990, 10: 1633-1641
[97] Edwards H, Trezeguet V, Schimmel P. Proc. Natl. Acad. Sci. USA, 1991, 88: 1153-1156
[98] Chin J W, Cropp T A, Anderson J C, Mukherji M, Zhang Z, Schultz P G. Science, 2003, 301: 964-967
[99] Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King D S, Schultz P G. Proc. Natl. Acad. Sci. USA, 2004, 101: 8882-8887
[100] Lutz J F, Borner H G. Prog. Polym. Sci., 2008, 33: 1-39
[101] Strable E, Prasuhn D E, Udit A K, Brown S, Link A J, Ngo J T, Lander G, Quispe J, Potter C S, Carragher B, Tirrell D A, Finn M G. Bioconjugate Chem., 2008, 19: 866-875
[102] Cazalis C S, Haller C A, Sease-Cargo L, Chaikof E L. Bioconjugate Chem., 2004, 15: 1005-1009
[103] van Kasteren S I, Kramer H B, Gamblin D P, Davis B G. Nat. Protoc., 2007, 2: 3185-3194
[104] van Kasteren S I, Kramer H B, Jensen H H, Campbell S J, Kirkpatrick J, Oldham N J, Anthony D C, Davis B G. Nature, 2007, 446: 1105-1109
[105] Beatty K E, Liu J C, Xie F, Dieterich D C, Schuman E M, Wang Q, Tirrell D A. Angew. Chem. Int. Ed., 2006, 45: 7364-7367
[106] Beatty K E, Xie F, Wang Q, Tirrell D A. J. Am. Chem. Soc., 2005, 127: 14150-14151
[107] Link A J, Tirrell D A. J. Am. Chem. Soc., 2003, 125: 11164-11165
[108] Deiters A, Cropp T A, Mukherji M, Chin J W, Anderson J C, Schultz P G. J. Am. Chem. Soc., 2003, 125: 11782-11783
[109] Deiters A, Schultz P G. Bioorg. Med. Chem. Lett., 2005, 15: 1521-1524
[110] Deiters A, Cropp T A, Summerer D, Mukherji M, Schultz P G. Bioorg. Med. Chem. Lett., 2004, 14: 5743-5745
[111] Iida S, Asakura N, Tabata K, Okura I, Kamachi T. ChemBioChem, 2006, 7: 1853-1855
[112] Bundy B C, Swartz J R. Bioconjugate Chem., 2010, 21: 255-263
[113] Godoy-Alcntar C, Yatsimirsky A K, Lehn J J. Phys. Org. Chem., 2005, 18: 979-985
[114] Geoghegan K F, Stroh J G. Bioconjugate Chem., 1992, 3: 138-146
[115] Shao J, Tam J P. J. Am. Chem. Soc., 1995, 117: 3893-3899
[116] Rose K. J. Am. Chem. Soc., 1994, 116: 30-33
[117] Tam J P, Yu Q, Miao Z. Pept. Sci., 1999, 51: 311-332
[118] Löwik D, Ayres L, Smeenk J, van Hest J. Adv. Polym. Sci., 2006, 202: 19-52
[119] Köhn M, Breinbauer R. Angew. Chem. Int. Ed., 2004, 43: 3106-3116
[120] Gaertner H F, Offord R E. Bioconjugate Chem., 1996, 7: 38-44
[121] Canne L E, Ferre-D’Amare A R, Burley S K, Kent S B H. J. Am. Chem. Soc., 1995, 117: 2998-3007
[122] Zeng H, Xie J, Schultz P G. Bioorg. Med. Chem. Lett., 2006, 16: 5356-5359
[123] Datta D, Wang P, Carrico I S, Mayo S L, Tirrell D A. J. Am. Chem. Soc., 2002, 124: 5652-5653
[124] Wang L, Zhang Z, Brock A, Schultz P G. Proc. Natl. Acad. Sci. USA, 2003, 100: 56-61
[125] Zhang Z, Smith B A C, Wang L, Brock A, Cho C, Schultz P G. Biochemistry, 2003, 42: 6735-6746
[126] Ye S, Koehrer C, Huber T, Kazmi M, Sachdev P, Yan C Y, Bhagat E A, RajBhandary U L, Sakmar T P. J. Biol. Chem., 2008, 283: 1525-1533
[127] Taki M, Tokuda Y, Ohtsuki T, Sisido M. The Society for Biotechnology, Japan., 2006, 102: 511-517
[128] Liu H, Wang L, Brock A, Wong C, Schultz P G. J. Am. Chem. Soc., 2003, 125: 1702-1703
[129] Bar-Or R, Rael L T, Bar-Or D. Rapid Commun. Mass Spectrom., 2008, 22: 711-716
[130] Seebeck F P, Szostak J W. J. Am. Chem. Soc., 2006, 128: 7150-7151
[131] Wang J, Schiller S M, Schultz P G. Angew. Chem. Int. Ed., 2007, 46: 6849-6851
[132] Zhang Z, Wang L, Brock A, Schultz P G. Angew. Chem. Int. Ed., 2002, 41: 2840-2842
[133] Clark T D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117: 12364-12365
[134] Chin J W, Cropp T A, Anderson J C, Mukherji M, Zhang Z, Schultz P G. Science, 2003, 301: 964-967
[135] Chin J W, Santoro S W, Martin A B, King D S, Wang L, Schultz P G. J. Am. Chem. Soc., 2002, 124: 9026-9027
[136] Farrell I S, Toroney R, Hazen J L, Mehl R A, Chin J W. Nat. Methods, 2005, 2: 377-384
[137] Chin J W, Martin A B, King D S, Wang L, Schultz P G. Proc. Natl. Acad. Sci. USA, 2002, 99: 11020-11024
[138] Chin J W, Schultz P G. ChemBioChem, 2002, 3: 1135-1137
[139] Kauer J C, Erickson-Viitanen S, Wolfe H R, DeGrado W F. J. Biol. Chem., 1986, 261: 10695-10700
[140] Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin J W, Schultz P G, Bukau B, Mogk A. Nat. Struct. Mol. Biol., 2004, 11: 607-615
[141] Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban E U, Dougan D A, Tsai F T, Mogk A, Bukau B. Cell, 2004, 119: 653-665
[142] Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Nat. Methods, 2005, 2: 201-206
[143] Wu N, Deiters A, Cropp T A, King D, Schultz P G. J. Am. Chem. Soc., 2004, 126: 14306-14307
[144] Deiters A, Groff D, Ryu Y, Xie J, Schultz P G. Angew. Chem. Int. Ed., 2006, 45: 2728-2731
[145] Wang J, Xie J, Schultz P G. J. Am. Chem. Soc., 2006, 128: 8738-8739
[146] Summerer D, Chen S, Wu N, Deiters A, Chin J W, Schultz P G. Proc. Natl. Acad. Sci. USA, 2006, 103: 9785-9789
[147] Tsao M L, Summerer D, Ryu Y, Schultz P G. J. Am. Chem. Soc., 2006, 128: 4572-4573
[148] Deiters A, Geierstanger B H, Schultz P G. ChemBioChem, 2005, 6: 55-58
[149] Suydam I T, Boxer S G. Biochemistry, 2003, 42: 12050-12055
[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[4] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[5] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[6] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[7] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[8] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[9] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[10] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.
[11] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[12] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[13] 石婷, 陈铭, 陈雄平, 汪汲涛, 万锕俊, 赵一雷. 蛋白质巯基亚硝基化分子机制及其疾病相关性[J]. 化学进展, 2015, 27(5): 594-600.
[14] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[15] 曹亚, 朱小立, 赵婧, 李昊, 李根喜. 肿瘤标志蛋白的电化学分析[J]. 化学进展, 2015, 27(1): 1-10.