English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 568-576 前一篇   后一篇

• 综述与评论 •

电化学葡萄糖传感器

石文韬1,2, 邸静1, 马占芳1   

  1. 1. 首都师范大学化学系 北京 100048;
    2. 中国科学院电子学研究所 北京 100190
  • 收稿日期:2011-08-01 修回日期:2011-09-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    北京市市属高校知识创新团队项目(No.PRH20100718);北京市科技发展计划项目(No.KM200810028010)资助

Electrochemical Glucose Biosensors

Shi Wentao1,2, Di Jing1, Ma Zhanfang1   

  1. 1. Department of Chemistry, Capital Normal University, Beijing 100048, China;
    2. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2011-08-01 Revised:2011-09-01 Online:2012-04-24 Published:2012-02-08
作为电化学生物传感器中最重要的研究内容之一,葡萄糖生物传感器在数十年的发展中取得了巨大进展。本文综述了近年来利用纳米技术设计的新型电化学葡萄糖传感器的主要研究进展,并从纳米材料维度分类进行了讨论。其中,零维纳米材料主要讨论了包括金纳米颗粒、银纳米颗粒以及铜、铂等金属纳米颗粒材料; 一维纳米材料主要讨论了通过模板法制备的金属或金属氧化物纳米线以及单臂或者多壁纳米管材料; 二维纳米材料主要总结了以碳为基础的石墨烯材料和一些片状的金属材料。纳米材料对电化学葡萄糖传感器的影响主要集中在生物相容性、增强检测灵敏度、酶的固定等方面。此外,本文也对电化学葡萄糖传感器的今后发展做了展望。
As one of the most important researches of electrochemical biosensors, electrochemical glucose biosensors obtained great achievements in the last several decades. The main research is reviewed in this paper, which focused on designing new electrochemical glucose biosensors based on nanotechnology in recent years. It was clarified by the dimensionality of the nanomaterials. Among them, zero-dimensional nanomaterials involving gold nanoparticles, silver nanoparticles, and other metal nanoparticles, one-dimensional nanomaterials involving metal or metal oxide nano wires or tubes by template methods and single wall or multi wall carbon nanotubes, two-dimensional nanomaterials involving graphene and other plate-like metal nanomaterials are discussed. The effects of nanomaterials on the electrochemical glucose biosensors are mainly focused on the biocompatibility, enhancement of sensitivity and selectivity, enzyme immobilization, etc. Additionally, the prospects of future development of electrochemical glucose biosensors is also given.
Contents
1 Introduction
2 Zero-dimension nanomaterials based glucose biosensors
2.1 Gold nanoparticles
2.2 Silver nanoparticles
2.3 Other nanoparticles
3 One-dimension nanomaterials based glucose biosensors
3.1 Nanowires prepared by template methods
3.2 Carbon nanotubes
4 Two-dimension nanomaterials based glucose biosensors
5 Conclusion and outlook

中图分类号: 

()
[1] Clark L C, Lyons C N Y. Acad. Sci., 1962, 102: 29-45
[2] Willner I, Lapidot N, Riklin A, Kasher R, Zahavy E, Katz E. J. Am. Chem. Soc., 1994, 116: 1428-1441
[3] Valentini F, Palleschi G. Anal. Lett., 2008, 41: 479-520
[4] Crumbliss A L, Perine S C, Stonehuerner J, Tubergen K R, Zhao J G, Henkens R W, O’Daly J P. Biotechnol. Bioeng., 1992, 40: 483-490
[5] Horisberger M. Trends Biochem. Sci., 1983, 8: 395-397
[6] 陈桂芳(Chen G F), 梁志强(Liang Z Q), 李根喜(Li G X). 生物物理学报(Acta Biophysica Sinica), 2010, 8: 711-725
[7] 杨海朋(Yang H P), 陈仕国(Chen S G), 李春辉(Li C H), 陈东成(Chen D C), 戈早川(Ge Z C). 化学进展(Prog. Chem. ), 2009, 21: 210-216
[8] Rajesh, Ahuja T, Kumar D. Sens. Actuat. B, 2009, 136: 275-286
[9] Yabuki S, Mizutani F. Proc. East Asia Conf. Chem. Sens. 2nd, 1995. 270-272
[10] Bharathi S. Anal. Commun., 1998, 35: 29-31
[11] Wang J, Pamidi P V A. Anal. Chem., 1997, 69: 4490-4494
[12] Chen Z J, Ou X M, Tang F Q, Jiang L. Colloids Surf. B, 1996, 7: 173-179
[13] Willner I, Katz E. Angew. Chem. Int. Ed., 2000, 39: 1180-1218
[14] Willner I. Science, 2002, 298: 2407-2408
[15] Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner I. Science, 2003, 299: 1877-1881
[16] Zhang S, Wang N, Yu H, Niu Y, Sun C. Bioelectrochemistry, 2005, 67: 15-22
[17] Yang W, Wang J, Zhao S, Sun Y, Sun C. Electrochem. Commun., 2006, 8: 665-672
[18] Liu S Q, Ju H X. Biosens. Bioelectron., 2003, 19: 177-183
[19] Luo X L, Xu J J, Du Y, Chen H Y. Anal. Biochem., 2004, 334: 284-289
[20] Huang X J, Li C C, Gu B S, Kim J H, Cho S O, Choi Y K. J. Phys. Chem. C, 2008, 112: 3605-3611
[21] Ma S Y, Lu W S, Mu J, Liu F, Jiang L. Colloids Surf. A, 2008, 324: 9-13
[22] Wen X, Xie Y T, Mak W C, Cheung K Y, Li X Y, Renneberg R, Yang S. Langmuir, 2006, 22: 4836-4842
[23] Gan X, Liu T, Zhong J, Liu X, Li G. ChemBioChem, 2004, 5: 1686-1691
[24] Welch C M, Banks C E, Simm A O, Compton R G. Anal. Bioanal. Chem., 2005, 382: 12-21
[25] 马占芳(Ma Z F), 司国丽(Si G L), 初一鸣(Chu Y M), 陈颖(Chen Y). 化学进展(Prog. Chem.), 2009, 21: 1847-1856
[26] Ren X L, Meng X, Chen D, Tang F Q, Jiao J. Biosens. Bioelectron., 2005, 21: 433-437
[27] 唐芳琼(Tang F Q), 沈继锋(Shen J F), 张金芳(Zhang J F), 张改莲(Zhang G L). 高等学校化学学报(Chem. J. Chin. Univ. ), 1999, 20: 634-636
[28] Liu Y, Chai Y Q, Zhong X, Sun A L, Tang D P, Dai J Y, Yuan R. 化学传感器(Chem. Biosens. ), 2004, 24: 25-29
[29] Zuo S H, Teng Y J, Yuan H H, Lan M B. Anal. Lett., 2008, 41: 1158-1172
[30] 任湘菱(Ren X L), 唐芳琼(Tang F Q). 催化学报(Chinese Journal of Catalysis), 2000, 21: 455-458
[31] 张琳(Zhang L), 袁金锁(Yuan J S), 唐芳琼(Tang F Q), 江龙(Jiang L). 中国科学(B辑) (Scientia Sinica Chimica B), 1995, 25: 701-703
[32] 唐芳琼(Tang F Q), 韦正(Wei Z), 陈东(Chen D), 孟宪伟(Meng X W), 苟立(Gou L), 冉均国(Ran J G). 高等学校化学学报(Chem. J. Chin. Univ. ), 2000, 21: 91-94
[33] Xu J Z, Zhang Y, Li G X, Zhu J J. Mat. Sci. Eng. C, 2004, 24: 833-836
[34] Cao Z X, Zou Y J, Xiang C L, Sun L X, Xu F. Anal. Lett., 2007, 40: 2116-2127
[35] Chopra N, Gavalas V G, Bachas L G, Hinds B J, Bachas L G. Anal. Lett., 2007, 40: 2067-2096
[36] Bauer L A, Birenbaum N S, Meyer G J J. Mater. Chem., 2004, 14: 517-526
[37] Xia L, Wei Z X, Wan M X. J. Colloid Interface Sci., 2010, 341: 1-11
[38] Zhang X Y, Li D, Bourgeois L, Wang H, Webley P A. ChemPhysChem, 2009, 10: 436-441
[39] Loaiza O A, Laocharoensuk R, Burdick J, Rodrguez M C, Pingarron J M, Pedrero M, Wang J. Angew. Chem. Int. Ed., 2007, 46: 1508-1511
[40] Lu Y S, Yang M H, Qu F L, Shen G L, Yu R Q. Bioelectrochem., 2007, 71: 211-216
[41] Ren X L, Chen D, Meng X W, Tang F Q, Du A M, Zhang L. Colloid. Surfaces B, 2009, 72: 188-192
[42] Hrapovic S, Luong J H T. Anal. Chem., 2003, 75: 3308-3315
[43] Wang J. Electroanalysis, 2005, 17: 7-14
[44] Azamian B R, Davis J J, Coleman K S, Bagshaw C B, Green M L H. J. Am. Chem. Soc., 2002, 124: 12664-12665
[45] Tsai Y C, Li S C, Chen J M. Langmuir, 2005, 21: 3653-3658
[46] Lin Y H, Lu F, Tu Y, Ren Z F. Nano Lett., 2004, 4: 191-195
[47] Joshi P P, Merchant S A, Wang Y D, Schmidtke D W. Anal. Chem., 2005, 77: 3183-3188
[48] Kim B C, Zhao X Y, Ahn H K, Kim J H, Lee H J, Kim K W, Nair S, Hsiao E, Jia H F, Oh M K, Sang B I, Kim B S, Kim S H, Kwon Y, Ha S, Gu M B, Wang P, Kim J. Biosens. Bioelectron., 2011, 26: 1980-1986
[49] Zhang M G, Smith A, Gorski W. Anal. Chem., 2004, 76: 5045-5050
[50] Liu Y, Wang M K, Dong S J, Xu Z A, Dong S J. Biosens. Bioelectron., 2005, 21: 984-988
[51] Hrapovic S, Liu Y L, Male K B, Luong J H T. Anal. Chem., 2004, 76: 1083-1088
[52] Zeng Y L, Shen G L, Yu R Q, Zhang X B, Tang C R, Shen G L, Yu R Q. Electrochem. Commun., 2007, 9: 185-190
[53] Yang M H, Shen G L, Yu R Q, Chen X H, Shen G L, Yu R Q. Biosens. Bioelectron., 2006, 21: 1791-1797
[54] Manesh K M, Kim H T, Santhosh P, Gopalan A I, Lee K P. Biosens. Bioelectron., 2008, 23: 771-779
[55] 段大雪(Duan D X), 楚霞(Chu X). 化学传感器(Chem. Biosens.), 2006, 26: 29-33
[56] Xiang L, Zhang Z N, Yu P, Zhang J, Su L, Ohsaka T, Mao L Q. Anal. Chem., 2008, 80: 6587-6593
[57] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81: 2378-2382
[58] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22: 1027-1036
[59] Lu J, Drzal L T, Worden R M, Lee I. Chem. Mater., 2007, 19: 6240-6246
[60] Lu J, Do I, Drzal L T, Worden R M, Lee I. ACS Nano, 2008, 2: 1825-1832
[61] Shi W T, Ma Z F. Biosens. Bioelectron., 2010, 26: 1098-1103
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[7] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[8] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[9] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[10] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[11] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[12] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[13] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[14] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[15] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
阅读次数
全文


摘要

电化学葡萄糖传感器