English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 556-567 前一篇   后一篇

• 综述与评论 •

碳十硼烷及其衍生物的反应性及应用

赵娟, 黄鹏程, 陈功, 詹茂盛   

  1. 北京航空航天大学 材料科学与工程学院 北京 100191
  • 收稿日期:2011-08-01 修回日期:2011-09-01 出版日期:2012-04-24 发布日期:2012-02-08

Chemistry and Application of Dicarbadodecaborane and Its Derivatives

Zhao Juan, Huang Pengcheng, Chen Gong, Zhan Maosheng   

  1. Materials Science and Engineering School, Beihang University, Beijing 100191, China
  • Received:2011-08-01 Revised:2011-09-01 Online:2012-04-24 Published:2012-02-08
碳十硼烷(C2B10H12)是由2个C原子和10个B原子组成的二十面体笼状结构大分子,有邻位、间位和对位三种异构体。碳十硼烷庞大的体积以及类芳香族三维刚性结构使它具有优异的高温稳定性和化学稳定性,良好的溶解性使其具有广泛而灵活的应用。本文总结了近年来碳十硼烷和碳十硼烷衍生物在C原子、B原子上的化学反应性以及在环加成和金属络合方面的研究。另外,由于碳十硼烷衍生物特殊的立体结构,优异的耐高温性、热氧化性及高硼含量,本文综述了碳十硼烷衍生物近年来在功能材料、催化剂及生物医药等多个领域的应用进展。
Dicarba-closo-dodecaborane (carborane, C2B10H12) containing two carbon atoms and ten boron atoms adopts nearly icosahedral geometry in which the carbon and boron atoms are hexacoordinate. The compound exists as ortho-, meta-and para-isomers. Due to the strong electron-acceptor properties of the cluster, massive bulk and three-dimensional rigidity, carborane and its derivatives possess remarkable thermal and chemical stability. Besides, the ready solubility makes the compound and its derivatives widely applied. There are two common methods for synthesis of carborane and carborane derivatives, including the “alkyne insertion” methodology and the method based on the substitution reaction with carboranyl lithium. In this paper, the chemical reactions and functionalization of carborane and its derivatives are summarized, especially the substitution reactions on carbon atoms and boron atoms, the cycloaddition reaction and metal-carborane complexation. Futhermore, due to the excellent heat stability and high electronic delocalization, the carborane derivatives can be utilized as functional materials. Also, carborane derivatives can be applied in boron neutron capture therapy (BNCT) for the high boron content of carborane. Meanwhile, the metal-carborane complexes containing bulky carborane as ligands are reported to be available as the efficient catalysts. Herein, the advances in the application of the carborane derivatives in recent years are reviewed.
Contents
1 Introduction
2 Preparation, structure and properties of carborane
3 Chemical reaction of carborane
3.1 C-H functionalization
3.2 B-H functionalization
3.3 Cycloaddition reaction
3.4 Metal-carborane complexes
4 Application of carborane and its derivatives
4.1 Functional materials
4.2 Biological medicine
4.3 Catalysts
4.4 Others
5 Conclusion and outlook

中图分类号: 

()
[1] Heying T L, Ager J W, Clark S L, Mangold D J, Goldstein H L, Hillman M, Polak R J, Szymanski J W. Inorg. Chem., 1963, 2 : 1089-1092
[2] Fein M M, Bobinski J, Mayes N, Schwartz N, Cohen M S. Inorg. Chem., 1963, 2: 1111-1115
[3] Bregadze V I. Chem. Rev., 1992, 92: 209-223
[4] Davidson M G, Hughes A K, Marder T B, Wade K. Contemporary Boron Chemistry. Royal Society of Chemistry, 2000. 229-336
[5] Kalinin V N, Ol’shevskaya V A. Russ. Chem. Bull., 2008, 57: 815-836
[6] Barnes R L, Grafstein D. US 3 669 993, 1972
[7] Hedaya E, Kwiatkowski G T, Peters E N, Stewart D D. US 4 208 492, 1980
[8] Hedaya E, Kawakami J H, Kwiatkowski G T. US 4 145 504, 1979
[9] Alexander R P, Schroeder H A. US 3 320 185, 1967
[10] Frosch R A, Allcock H R, O’Brien J P, Scopelianos A G. US 4 288 585, 1981
[11] 张恩天(Zhang E T), 陈维君(Chen W J), 李刚(Li G), 焦新宇(Jiao X Y). 化学与粘合(Chemistry and Adhesion), 2003, (5): 242-244
[12] Leukart O, Caviezel M, Eberle A, Escher E, Tun-Kyi A, Schwyzer R. Helv. Chim. Acta, 1976, 59: 2184-2187
[13] Fauchère J L, Leukart O, Eberle A, Schwyzer R. Helv. Chim. Acta, 1979, 62: 1385-1395
[14] Schwyzer R, Do K Q, Eberle A N, Fauchère J L. Helv. Chim. Acta, 1981, 64: 2078-2083
[15] Wyzlic I M, Soloway A H. Tetrahedron Lett., 1992, 33: 7489-7490
[16] Schinazi R F, Goudgaon N M, Fulcrand G, Kattan Y, Lesnikowski Z, Ullas G, Moravek J, Liotta D C. Int. J. Radiat. Oncol. Biol. Phys., 1994, 28: 1113-1120
[17] Karnbrock W, Musiol H J, Moroder L. Tetrahedron, 1995, 51: 1187-1196
[18] Sayler A A, Beall H, Sieckhaus J F. J. Am. Chem. Soc., 1973, 95: 5790-5792
[19] Saxena A K, Hosmane N S. Chem. Rev., 1993, 93: 1081-1124
[20] Kreader C, Jordan R F, Zhang H M. Organometallics, 1995, 14: 2993-3001
[21] Harwell D E, McMillan J, Knobler C B, Hawthorne M F. Inorg. Chem., 1997, 36: 5951-5955
[22] Chui K, Yang Q C, Mak T C W, Lan W H, Lin Z Y, Xie Z W. J. Am. Chem. Soc., 2000, 122: 5758-5764
[23] Xie Z W. Acc. Chem. Res., 2003, 36: 1-9
[24] Ple ek J. Chem. Rev., 1992, 92: 269-278
[25] 周权 (Zhou Q), 茅祖菊(Mao Z J), 倪礼忠(Ni L Z), 陈建定 (Jiao J D). 中国塑料 (China Plastics), 2006, 20(7): 6-13
[26] Newlon A E. Doctoral Dissertation of Syracuse University, 2003
[27] 古林莎 ·果依其巴依(Gulinsa G), 张锐(Zhang R), 燕红(Yan H). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26: 733-743
[28] Armstrong A F, Valliant J F. Dalton Trans., 2007, 4240-4251
[29] Valliant J F, Guenther K J, King A S, Morel P, Schaffer P, Sogbein O O, Stephenson K A. Coord. Chem. Rev., 2002, 232: 173-230
[30] Fein M M, Grafstein D, Paustian J E, Bobinski J, Lichstein B M, Mayes N, Schwartz N N, Cohen M S. Inorg. Chem., 1963, 2: 1115-1119
[31] Grafstein D, Dvorak J. Inorg. Chem., 1963, 2: 1128-1133
[32] Papetti S, Heying T L. J. Am. Chem. Soc., 1964, 86: 2295-2295
[33] King R B. Russ. Chem. Bull., 1993, 42: 1283-1291
[34] 田尔琇 (Tian E X). 化学通报 (Chemistry Online), 1964, 10: 22-29
[35] Grafstein D, Bobinski J, Dvorak J, Smith H, Schwartz N, Cohen M S, Fein M M. Inorg. Chem., 1963, 2: 1120-1125
[36] Wiesboeck R A, Hawthorne M F. J. Am. Chem. Soc., 1964, 86: 1642-1643
[37] Hawthorne M F, Young D C, Garrett P M, Owen D A, Schwerin S G, Tebbe F N, Wegner P A. J. Am. Chem. Soc., 1968, 90: 862-868
[38] Zakharkin L I, Kirillova V S. Russ. Chem. Bull., 1975, 24: 2484-2486
[39] Schaeck J J, Kahl S B. Inorg. Chem., 1999, 38: 204-206
[40] Oki A R, Gilbes B, Tarasyuk F, Emge T J. Appl. Organometal. Chem., 2003, 7: 351-355
[41] Kononov L O, Orlova A V, Zinin A I, Kimel B G, Sivaev I B, Bregadze V I. J. Organometal. Chem., 2005, 690: 2769-2774
[42] Stanko V I, Khrapov V V, Babushkina T A. Russ. Chem. Rev., 1974, 43: 644-656
[43] Wellum G R, Tolpin E I, Andersen L P. J. Chromatogr, 1975, 103: 153-159
[44] Heying T L, Ager J W, Clark S L Jr, Alexander R P, Papetti S, Reid J A, Trotz S I. Inorganic Chemistry, 1963, 2: 1097-1105
[45] Hawthorne M F, Pitochelli A R. J. Am. Chem. Soc., 1959, 81: 5519-5519
[46] Stanko V I, Chaporskii Y A, Brattsev V A, Zakharkin L I. Rus. Chem. Rev., 1965, 34: 424-439
[47] Hill W E, Beason L R. US 3 764 417, 1973
[48] Vinas C, Benakki R, Teixidor F, Casabo J. Inorg. Chem., 1995, 34: 3844-3845
[49] Chayer S, Jaquinod L, Smith K M, Graca M, Vicente H. Tetrahedron Lett., 2001, 42: 7759-7761
[50] Byun Y, Thirumamagal B T S, Yang W, Eriksson S, Barth R F, Tjarks W. J. Med. Chem., 2006, 49: 5513-5523
[51] Endo Y, Yoshimi T, Miyaura C. Pure Appl. Chem., 2003, 75: 1197-1205
[52] Ohta K, Goto T, Endo Y. Inorg. Chem., 2005, 44: 8569-8573
[53] Young D C. US 3 702 241, 1972
[54] Cheung M S, Chan H S, Xie Z. Organometallics, 2004, 23: 517-526
[55] Ohta K, Goto T, Yamazaki H, Pichierri F, Endo Y. Inorg. Chem., 2007, 46: 3966-3970
[56] Kahl S B, Kasar R A. J. Am. Chem. Soc., 1996, 118: 1223-1224
[57] Dozzo P, Kasar R A, Kahl S B. Inorg. Chem., 2005, 44: 8053-8057
[58] Zakharkin L I, Ol’shevskaya V A, Kobak V V, Boiko N B. Metalloorg. Khim., 1988, 1: 364-366
[59] Zakharkin L I, Kovredov A I, Ol’shevskaya V A. Russ. Chem. Bull., 1982, 31: 599-602
[60] Wang S R, Qiu Z Z, Xie Z W. J. Am. Chem. Soc., 2011, 133: 5760-5763
[61] Gomez F A, Johnson S E, Hawthorne M F. J. Am. Chem. Soc., 1991, 113: 5915-5917
[62] Ma L, Hamdi J, Wong F, Hawthorne M F. Inorg. Chem., 2006, 45: 278-285
[63] Korshak V V, Komarova L G, Komarova N G, Vagin V V, Kats G A. Russ. Chem. Bull., 1986, 35: 2554-2555
[64] Malmquist J, Sjöberg S. Inorg. Chem., 1992, 31: 2534-2537
[65] Lee J D, Lee Y J, Jeong H J, Lee J S, Lee C H, Ko J, Kang S O. Organometallics, 2003, 22: 445-449
[66] Woodhouse S L, Rendina L M. Dalton Trans., 2004, 3669-3677
[67] Malmquist J, Ghaneolhosseini H, Sjöberg S. Acta Chem. Scand., 1996, 50: 958-960
[68] Wilson J G, Anisuzzaman A K M, Alam F, Soloway A H. Inorg. Chem., 1992, 31: 1955-1958
[69] Wu Y, Carroll P J, Kang S O, Quintana W. Inorg. Chem., 1997, 36: 4753-4761
[70] Zhu Y, Zhang H, Maguire J A, Hosmane N S. Inorg. Chem. Commun., 2001, 4: 447-449
[71] Osby J O, Martin M G, Ganem B. Tetrahedron Lett., 1984, 25: 2093-2096
[72] Zhao J, Chen S, Huang P C, Chen G. Inorg. Chem. Commun., 2011, 14: 934-936
[73] Klebanskii A L, Gridina V F, Dorofeenko L P, Zhigach A F, Kozlova N V, Krupnova L E, Zakharova G E, Shkambarnaya N I. Chem. Heterocycle Compounds, 1968, 4: 705-707
[74] Papetti S, Heying T L. Inorg. Chem., 1964, 3: 1448-1450
[75] Schwartz N N, O’brien E, Karlan S, Fein M M. Inorg. Chem., 1965, 4: 661-664
[76] Kalinin V N. Russ. Chem. Rev., 1980, 49: 1084-1096
[77] Schroeder H, Heying T L, Reiner J R. Inorg. Chem., 1963, 2: 1092-1096
[78] Ivanov S V, Lupinetti A J, Solntsev K A, Strauss S H. Fluorine Chem., 1998, 89: 65-72
[79] Robertson S, Ellis D, McGrath T D, Rosair G M, Welch A J. Polyhedron, 2003, 22: 1293-1301
[80] Ohta K, Goto T, Endo Y. Tetra. Lett., 2005, 46: 483-485
[81] Ohta K, Yamazaki H, Kawahata M, Yamaguchi K, Pichierric F, Endo Y. Tetrahedron Lett., 2007, 48: 5231-5234
[82] Diaz M A. Doctoral Dissertation of the University of California, 2001
[83] Yamazaki H, Ohta K, Endo Y. Tetrahedron Lett., 2005, 46: 3119-3122
[84] Gringrich H L, Ghosh T, Huang Q, Jońe M. J. Am. Chem. Soc., 1990, 112: 4083-4085
[85] Cunningham R J, Bian N, Jońes M. Inorg. Chem., 1994, 33: 4811-4812
[86] Ho D M, Cunningham R J, Brewen J A, Bian N, Jońes M. Inorg. Chem., 1995, 34: 5274-5278
[87] Deng L, Chan H S, Xie Z W. J. Am. Chem. Soc., 2006, 128: 7728-7729
[88] Qiu Z Z, Xie Z W. J. Am. Chem. Soc., 2009, 131: 2084-2085
[89] Ghosh T, Gingrich H L, Kam C K, Mobraaten E C, Jońes M. J. Am. Chem. Soc., 1991, 113: 1313-1318
[90] Barnett-Thannattoor L, Zheng G X, Ho D M, Jońes M. Inorg. Chem., 1996, 35: 7311-7315
[91] Zakharkin L I, Kalinin V N. Russ. Chem. Rev., 1974, 43: 551-562
[92] Wang Y R, Wang H P, Wang H, Chan H S, Xie Z W. J. Organometal. Chem., 2003, 683: 39-43
[93] Hou X F, Liu S, Zhang P C, Jin G X. J. Organometal. Chem., 2007, 692: 1766-1770
[94] Dou J M, Zhang D P, Li P C, Wang P Q. Eur. J. Inorg. Chem., 2007, 1: 53-59.
[95] Xu B H, Tao J C, Li Y Z, Yan H. Organometallics, 2008, 27: 334-340
[96] Xie Z W. Coord. Chem. Rev., 2006, 250: 259-272
[97] Wang J Q, Herberhold M, Jin G X. Organometallics, 2006, 25: 3508-3514
[98] Han Y F, Zhang J S, Lin Y J, Dai J, Jin G X. J. Organometal. Chem., 2007, 692: 4545-4550
[99] 陈银强(Chen Y Q). 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2008
[100] Todd J A, Turner P, Ziolkowski E J, Rendina L M. Inorg. Chem., 2005, 44: 6401-6408
[101] Chen Y Q, Wang J Q, Jin G X. J. Organometal. Chem., 2007, 692: 5190-5194
[102] 蔡淑怡(Cai S Y), 万玮(Wang W), 金国新(Jin G X). 第十二届全国金属有机化学会议 (The 12th national metal organic chemistry seminar). 2002, 132-133
[103] Grimes R N. Coord. Chem. Rev., 2000, 200: 773-811
[104] Cheung M S, Chan H S, Xie Z W. Organometallics, 2005, 24: 4207-4215
[105] Xie Z W. Coord. Chem. Rev., 2002, 231: 23-46
[106] Xie Z W. Acc. Chem. Res., 2003, 36: 1-9
[107] Deng L, Xie Z W. Coord. Chem. Rev., 2007, 251: 2452-2476
[108] Planas J G, Vinas C, Teixidor F, Comas-Vives A, Ujaque G, Lledos A, Light M E, Hursthouse M B. J. Am. Chem. Soc., 2005, 127: 15976-15982
[109] Li Y G, Jiang Q B, Li Y Z, Shen X J, Yan H, Bregadze V I. Inorg. Chem., 2010, 49: 5584-5590
[110] Hu J R, Liu G F, Jiang Q B, Zhang R, Huang W, Yan H. Inorg. Chem., 2010, 49: 11199-11204
[111] Kong L Q, Zhang D P, Su F F, Lu J, Li D C, Dou J M. Inorg. Chim. Acta, 2011, 370: 1-6
[112] Yang L G, Zhu C C, Zhang D P, Li D C, Wang D Q, Dou J M. Polyhedron, 2011, 30: 1469-1477
[113] Kakinin V N, Sarishvili I G, Zhigach A F, Sobolevskii M V. Russ. Chem. Rev., 1967, 36: 903-915
[114] Mel’nik O A, Sakharova A A, Frunze T M. Russ. Chem. Rev., 1988, 57: 875-885
[115] Roller M B, Gillham J K. J. Appl. Polym. Sci., 1973, 17: 2141-2172
[116] Dougherty T K. US 5 290 897, 1994
[117] Patel M, Swain A C. Polym. Degrad. Stabil., 2004, 83: 539-545
[118] Henderson L J, Keller T M. Macromolecules, 1994, 27: 1660-1661
[119] Keller T M, Henderson L J. US 5 292 779, 1994
[120] Keller T M. US 5 552 505, 1996
[121] Keller T M, Kolel-Veetil M K. US App. 12633854, 2010
[122] Keller T M, Kolel-Veetil M K. US 7 923 523 B2, 2011
[123] da Silva L F M, Adams R D. Int. J. Adhes. Adhes., 2007, 27: 216-226
[124] Zhou Q, Mao Z J, Ni L Z, Chen J D. J. Appl. Polym. Sci., 2007, 104: 2498-2503
[125] Keller T M. Carbon, 2002, 40: 225-229
[126] Schwan D, Litt M H. Adv. Perform. Mater., 1996, 3: 153-169
[127] 盛磊(Sheng L). 航天返回与遥感(Spacecraft Recovery & Remote Sensing), 2001, 22: 48-55
[128] Armistead J P, Houser E J, Keller T M. Appl. Organometal. Chem., 2000, 14: 253-260
[129] Lu S Y, Hamerton I. Prog. Polym. Sci., 2002, 27: 1661-1712
[130] Taylor J, Caruso J, Newlon A, Englich U, Ruhlandt-Senge K, Spencer J T. Inorg. Chem., 2001. 40: 3381-3388
[131] Wang J Q, Jin G X. Inorg. Chem. Commun., 2007, 10: 463-466
[132] 仇永清(Qiu Y Q), 陈徽(Chen H), 孙世玲(Sun S L), 范洪玲(Fan H L), 苏忠民(Su Z M). 科学通报(Chinese Science Bulletin), 2007, 52: 773-776
[133] Kunkely H, Vogler A. Inorg. Chim. Acta, 2004, 357: 4607-4609
[134] Paschenko V Z, Evstigneeva R P, Gorokhov V V, Luzgina V N, Tusov V B, Rubin A B. J. Photochem. Photobiol. B: Biol., 2000, 54: 162-167
[135] Kokado K, Nagai A, Chujo Y. Tetrahedron Lett., 2011, 52: 293-296
[136] Peterson J J, Werre M, Simon Y C, Coughlin E B, Carter K R. Macromolecules, 2009, 42: 8594-8598
[137] Lerouge F, Viñas C, Teixidor F, Núñez R, Abreu A, Xochitiotzi E, Santillan R, Farfán N. Dalton Trans., 2007, 19: 1898-1903
[138] Lamrani M, Hamasaki R, Mitsuishi M, Miyashita T, Yamamoto Y. Chem. Commun., 2000, 17: 1595-1596
[139] Kokado K, Chujo Y. Dalton Trans., 2011, 40: 1919-1923
[140] Nicoud J F, Bolze F, Sun X H, Hayek A, Baldeck P. Inorg. Chem., 2011, 50: 4272-4278
[141] Kokado K, Tokoro Y, Chujo Y. Macromolecules, 2009, 42: 9238-9242
[142] Dash B P, Sataphthy R, Gaillard E R, Norton K M, Maguire J A, Chug N, Hosmane N S. Inorg. Chem., 2011, 50: 5485-5493
[143] Kokado K, Yuichiro T, Chujo Y. Macromolecules, 2009, 42: 2925-2930
[144] Robertson B W, Adenwalla S, Harken A, Welsch P, Brand J I, Dowben P A. Appl. Phys. Lett., 2002, 80: 3644-3646
[145] Chaudhari P, Meshram N, Singh A, Topkar A, Dusane R. Thin Solid Films, 2011, 519: 4561-4564
[146] Carturan S, Quaranta A, Marchi T, Gramegna F, Degerlier M, Cinausero M, Kravchuk V L, Poggi M. Radiation Protection Dosimetry, 2011, 143: 471-476
[147] Thirumamagal B T S, Zhao X B, Bandyopadhyaya A K, Narayanasamy S, Johnsamuel J, Tiwari R, Golightly D W, Patel V, Jehning B T, Backer M V, Barth R F, Lee R J, Backer J M, Tjarks W. Bioconjugate Chem., 2006, 17: 1141-1150
[148] Naeslund C, Chirmai S, Sjoberg S. Tetrahedron, 2005, 61: 1181-1186
[149] Timofeev S V, Osipov B S N, Titanyuk I D, Petrovskii P V, Starikova Z A, Glukhov I V, Beletskaya I P. Russ. Chem. Bull. Int. Ed., 2007, 56: 791-797
[150] Byun Y, Thirumamagal B T S, Yang W, Eriksson S, Brath R F, Tjarks W. J. Med. Chem., 2006, 49: 5513-5523
[151] Ohta K, Goto T, Fujii S, Kawahata M, Oda A, Ohta S, Yamaguchi K, Hirono S, Endo Y. Bioorg. Med. Chem., 2011, 19: 3540-3548
[152] Zhu Y H, Peng A T, Carpenter K, Maguire J A, Hosmane N S, Takagaki M. J. Am. Chem. Soc., 2005, 127: 9875-9880
[153] Galie K M, Mollard A, Zharov I. Inorg. Chem., 2006, 45: 7815-7820
[154] Parrott M C, Marchington E B, Valliant J F, Adronov A. Macromol. Symp., 2003, 196: 201-211
[155] Parrott M C, Marchington E B, Valliant J F, Adronov A. J. Am. Chem. Soc., 2005, 127: 12081-12089
[156] Green A E C, Causey P W, Louie A S, Armstrong A F, Harrington L E, Valliant J F. Inorg. Chem., 2006, 45: 5727-5729
[157] Aime S, Barge A, Crivello A, Deagostino A, Gobetto R, Nervi C, Prandi C, Toppino A, Venturello P. Org. Biomol. Chem., 2008, 6: 4460-4466
[158] Spielvogel B F. US 5 286 853, 1994
[159] Nemoto H, Cai J P, Nakamura H, Fujiwara M, Yamamoto Y. J. Organometal. Chem., 1999, 581: 170-175
[160] Nakamura H, Fukuda H, Girald F, Kobayashi T, Hiratsuka J, Akaizawa T, Nemoto H, Cai J P, Yoshida K, Yamamoto Y. Chem. Pharm. Bull., 2000, 48: 1034-1038
[161] Paxson T E, Hawthorne M F. J. Am. Chem. Soc., 1974, 96: 4674-4676
[162] Hardy G E, Callahan K P, Strouse C E, Hawthorne M F. Acta Cryst., 1976, B32: 264-266
[163] Baker R T, Delaney M S, King R E, Knobler C B, Long J A, Marder T B, Paxson T E, Teller R G, Hawthorne M F. J. Am. Chem. Soc., 1984, 106: 2965-2978
[164] Paavola S. Doctoral Dissertation of the University of Helsinki, 2002
[165] Zhu Y H, Zhong Y L, Carpenter K, Maguire J A, Hosmane N S. J. Organometal. Chem., 2005, 690: 2802-2808
[166] Gao M L, Tang Y, Xie M H, Qian C T, Xie Z W. Organometallics, 2006, 25: 2578-2584
[167] Lyubimov S E, Tyutyunov A A, Kalinin V N, Said-Galiev E E, Khokhlov A R, Petrovskii P V, Davankov V A. Tetrahedron Lett., 2007, 48: 8217-8219
[168] Lyubimov S E, Safronov A S, Tyutyunov A A, Kalinin V N, Said-Galiev E E, Khokhlov A R, Petrovskii P V, Valetskii P M, Davankov V A. Russ. Chem. Bull. Int. Ed., 2008, 57: 345-348
[169] Lyubimov S E, Kuchurov I V, Tyutyunov A A, Petrovskii P V, Kalinin V N, Zlotin S G, Davankov V A, Hey-Hawkins E. Catal. Commun., 2010, 11: 419-421
[170] Tyutyunov A A, Lyubimov S E, Rys E G, Verbitskaya T A, Petrovskii P V, Davankov V A, Kalinin V N. Russ. Chem. Bull. Int. Ed., 2008, 57: 2307-2310
[171] Lyubimov S E, Kuchurov I V, Vasil’ev A A, Tyutyunov A A, Kalinin V N, Davankov V A, Zlotin S G. J. Organometal. Chem., 2008, 694: 3047-3049
[172] Lyubimov S E, Verbitskaya T A, Rys E G, Petrovskii P V, Il’in M M, Davankov V A, Kalinin V N. Russ. Chem. Bull. Int. Ed., 2010, 59: 1665-1667
[173] Lyubimov S E, Davankov V A, Gavrilov K N, Grishina T B, Rastorguev E A, Tyutyunov A A, Verbitskaya T A, Kalinin V N, Hey-Hawkins E. Tetrahedron Lett., 2010, 51: 1682-1684
[174] Lyubimov S E, Ol’shevskaya V A, Petrovskii P V, Rastorguev E A, Verbitskaya T A, Kalinin V N, Davankov V A. Russ. Chem. Bull. Int. Ed., 2010, 59: 1836-1839
[175] Wedge T J, Hawthorne M F. Coord. Chem. Rev., 2003, 240: 111-128
[176] Lee H, Diaz M, Hawthorne M F. Tetrahedron Lett., 1999, 40: 7651-7655
[177] Badr I H A, Diaz M, Hawthorne M F, Bachas L G. Anal. Chem., 1999, 71: 1371-1377
[178] Badr I H A, Johnson D, Diaz M, Hawthorne M F, Bachas L G. Anal. Chem., 2000, 72: 4249-4254
[179] Lee H, Knobler C B, Hawthorne M F. J. Am. Chem. Soc., 2001, 123: 8543-8549
[180] Zheng Z P, Knobler C B, Mortimer M D, Kong G, Hawthorne M F. Inorg. Chem., 1996, 35: 1235-1243
[181] Hawthorne M F, Zheng Z P. Acc. Chem. Res., 1997, 30: 267-276
[182] Zinn A A, Knobler C B, Harwell D E, Hawthorne M F. Inorg. Chem., 1999, 38: 2227-2230
[183] Morin J F, Sasaki T, Shirai Y, Guerrero J M, Tour J M. J. Org. Chem., 2007, 72: 9481-9490
[184] Morin J F, Shirai Y, Tour J M. Org. Lett., 2006, 18(3): 1713-1716
[185] Godoy J, Vives G, Tour J M. Org. Lett., 2010, 12: 1464-1467
[186] 单文刚(Shan W G), 孙铁钢(Sun T G), 张国东(Zhang G D). 固体火箭技术(Journal of Solid Rocket Technology), 1995, 8(3): 24-27
[188] Baše T, Basta Z, Plzák Z, Grygar T, Pleek J, Carr M J, Malina V, ubrt J, Bohá ek J, Ve erníková E, K í O. Langmuir., 2005, 21: 7776-7785
[189] Bastl T B, Havránek V, Lang K, Bould J, Londesborough M G S, Machá ek J, Ple ek J. Surface & Coatings Technology, 2010, 204: 2639-2646
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[6] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[7] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[8] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[9] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[10] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[11] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[12] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[13] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[14] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[15] 刘江波, 王丽华, 左小磊. 基于DNA的细胞膜功能化[J]. 化学进展, 2019, 31(8): 1067-1074.