English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 545-555 前一篇   后一篇

• 综述与评论 •

二苯乙烯类低聚物的仿生合成

李文玲, 臧鹏, 李洪福, 杨世霞   

  1. 兰州交通大学化学与生物工程学院 兰州 730070
  • 收稿日期:2011-08-01 修回日期:2011-11-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.21062010)、甘肃省自然科学基金项目(No.1014RJZA039);兰州交通大学青蓝人才工程基金项目资助

Biomimetic Synthesis of Oligostilbenes

Li Wenling, Zang Peng, Li Hongfu, Yang Shixia   

  1. School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2011-08-01 Revised:2011-11-01 Online:2012-04-24 Published:2012-02-08
天然二苯乙烯低聚物是一类自然界分布广泛的多酚化合物,因其结构复杂且生物活性多样而受到密切关注,但此类化合物天然资源的稀少极大限制了其构效关系的调查及活性药物的筛选。近年来许多化学家对此类低聚物的仿生合成方法做了广泛而深入的研究,已形成一个新的研究热点。本文详尽综述了迄今三十多年来二苯乙烯类低聚物的仿生合成研究进展,包括在不同介质中的酶催化或金属氧化剂催化的氧化偶联方法、光催化的异构化及强酸催化下的环合反应,由不同的二苯乙烯前体通过仿生合成途径,构建出结构多样的二苯乙烯低聚物。此外,本文对该类低聚物的仿生合成研究前景做了展望。
Natural oligostilbenes are a class of plant polyphenols widely distributed in nature, and have received considerable attention in the chemical and biological fields because of their structural complexity as well as their diverse bioactivities. These oligomers and their derivatives are potentially useful leading compounds for drug development. Further investigations of structure-activity of oligostilbenes to screen active drugs were limited for their scarce availability in natural raw materials. Biosynthetic strategies towards these oligomers are studied widely and intensively by a number of chemists in recent years and has been a hot research topic. In this paper, the progress in the studies on the biomimetic synthesis of oligostilbenes over the past thirty years is reviewed in detail, including oxidative coupling reactions catalyzed by enzymes or metallic oxidants in various reaction mediums, isomerization under UV irradiation and cyclization induced by several strong acids. Diverse complex molecular architectures of oligostilbenes are thus constructed from a wide array of stilbene precursors through biomimetic routes. The future synthetic trend of oligostilbenes is also prospected.
Contents
1 Introduction
2 Biomimetic synthesis of oligostilbenes
2.1 Enzyme induced oxidative coupling reactions
2.2 Photochemical isomerization of oligostilbenes
2.3 Metallic oxidants catalyzed oligomerization
2.4 Cyclic dimerization catalyzed by acids
3 Conclusions and outlook

中图分类号: 

()
[1] 李娜 (Li N), 李小妹 (Li X M), 黄开胜 (Huang K S), 林茂(Lin M). 药学学报 (Acta Pharm. Sin.), 2001, 36: 944-950
[2] 李小妹 (Li X M), 李娜 (Li N), 黄开胜(Huang K S), 林茂(Lin M). 药学学报(Acta Pharm. Sin.), 2002, 37: 69-74
[3] Shen T, Wang X N, Lou H X. Nat. Prod. Rep., 2009, 26: 916-935
[4] Sotheeswaran S, Pasupathy V. Phytochemistry, 1993, 32: 1083-1092
[5] Lin M, Yao C S. Stud. Nat. Prod. Chem., 2006, 33: 601-644
[6] Langcake P, Pryce R J. Phytochemistry, 1977, 16: 1193-1196
[7] Langcake P, Pryce R J. J. Chem. Soc. Chem. Commun., 1977, 208-210
[8] Donnelly D M X, Murphy F G. J. Chem. Soc. Perkin Trans 1, 1987, 2719-2722
[9] Cichewicz R H, Kouzi S A, Hamann M T. J. Nat. Prod., 2000, 63: 29-33
[10] Nicotra S, Cramarossa M R, Mucci A, Pagnoni U M, Riva S, Forti L. Tetrahedron, 2004, 60: 595-600
[11] Takaya Y, Terashima K, Ito J, He Y H, Tateoka M, Yamaguchi N, Niwa M. Tetrahedron, 2005, 61: 10285-10290
[12] 李文玲(Li W L), 何侃侃(He K K), 李瀛(Li Y), 侯自杰(Hou Z J). 化学学报(Acta Chim. Sin.), 2005, 63: 1607-1612
[13] Ponzoni C, Beneventi E, Cramarossa M R, Raimondi S, Trevisi G, Pagnoni U M, Riva S, Forti L. Adv. Synth. Catal., 2007, 349: 1497-1506
[14] Li W L, Li H, Li Y, Hou Z J. Angew. Chem. Int. Ed., 2006, 45: 7609-7611
[15] Ito J, Niwa M. Tetrahedron, 1996, 52: 9991-9998
[16] Takaya Y, Yan K X, Terashima K, He Y H, Niwa M. Tetrahedron, 2002, 58: 9265-9271
[17] He Y H, Takaya Y, Terashima K, Niwa M. Heterocycles, 2006, 68: 93-100
[18] He S, Wu B, Pan Y J, Jiang L Y. J. Org. Chem., 2008, 73: 5233-5241
[19] Ito J, Gobaru K, Niwa M. Tetrahedron, 1998, 54: 6651-6660
[20] Baba K, Kido T, Kozawa M. Phytochemistry, 1994, 36: 1509-1513
[21] Kawabata J, Mishima M, Kurihara H. Phytochemistry, 1995, 40: 1507-1510
[22] Huang K S, Lin M, Wang Y H. Chin. Chem. Lett., 2000, 11: 1061-1062
[23] Zhou L X, Lin M. Chin. Chem. Lett., 2000, 11: 515-516
[24] 周立新(Zhou L X), 林茂(Lin M). 药学学报(Acta Pharm. Sin.), 2000, 35: 669-674
[25] Yao C S, Zhou L X, Lin M. Chem. Pharm. Bull., 2004, 52(2): 238-243
[26] Thomas N F, Lee K C, Paraidathathu T, Weber J F F, Awang K, Rondeau D, Richomme P. Tetrahedron, 2002, 58: 7201-7206
[27] Sako M, Hosokawa H, Ito T, Tinuma M. J. Org. Chem., 2004, 69: 2598-2600
[28] Takaya Y, Terashima K, Ito J, He Y H, Tateoka M, Yamaguchi N, Niwa M. Tetrahedron, 2005, 61: 10285-10290
[29] Velu S S, Buniyamin I, Ching L K, Feroz F, Noorbatcha I, Gee L C, Awang K, Wahab I A, Weber J F F. Chem. Eur. J., 2008, 14: 11376-11384
[30] Li W L, Li H F, Luo Y L, Yang Y H, Wang N. Synlett, 2010, 8: 1247-1250
[31] Li W L, Luo Y L, Li H F, Zang P, Han X Q. Synthesis, 2010, 22: 3822-3826
[32] Samaraweera U, Sotheeswaran S, Sultanbawa M U S. Phytochemistry, 1982, 21: 2585-2587
[33] Korhammer S, Reniero F, Mattivi F. Phytochemistry, 1995, 38: 1501-1504
[34] Aguirre J M, Alesso E N, Iglesias G Y M. J. Chem. Soc. Perkin Trans.1, 1999, 1353-1358
[35] Li X M, Huang K S, Lin M, Zhou L X. Tetrahedron, 2003, 59: 4405-4413
[36] Li X C, Ferreira D. Tetrahedron, 2003, 59: 1501-1507
[37] Takaya Y, Yan K X, Terashima K J, Ito J, Niwa M. Tetrahedron, 2002, 58: 7259-7265
[38] Takaya Y, Yan K X, Terashima K, He H Y, Niwa M. Tetrahedron, 2002, 58: 9265-9271
[39] Snyder S A, Breazzano S P, Ross A G, Lin Y Q, Zografos A L. J. Am. Chem. Soc., 2009, 131: 1753-1765
[40] Snyder S A, Zografos A L, Lin Y Q. Angew. Chem. Int. Ed., 2007, 46: 8186-8191
[41] Jeffrey J L, Sarpong R. Tetrahedron Lett., 2009, 50: 1969-1972
[42] Nicolaou K C, Wu T R, Kang Q, Chen D Y K. Angew. Chem. Int. Ed., 2009, 48: 3440-3443
[43] Kim I, Choi J. Org. Biomol. Chem., 2009, 7: 2788-2795
[44] Nicolaou K C, Kang Q, Wu T R, Lim C S, Chen D Y K. J. Am. Chem. Soc., 2010, 132: 7540-7548
[45] Snyder S A, Sherwood T C, Ross A G. Angew. Chem. Int. Ed., 2010, 49: 5146-5150
[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[3] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[4] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[5] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
[6] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[7] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[8] 翁建全, 余志勤, 张国富. 非官能化芳烃与烯烃的直接氧化偶联反应[J]. 化学进展, 2012, 24(04): 523-544.
[9] 石玉刚, 蔡燕, 励建荣, 朱延和. 离子液体中酶促区域选择性合成CFAE[J]. 化学进展, 2011, 23(11): 2247-2257.
[10] 陈茂 翁玥 雷爱文. 过渡金属催化的1,n-烯炔类化合物的不对称环异构化反应[J]. 化学进展, 2010, 22(07): 1341-1352.
[11] 卢玉华 宋飞杰 贾学顺 刘元红. 过渡金属催化的呋喃合成*[J]. 化学进展, 2010, 22(01): 58-70.
[12] 李旭琴 刘安. 无保护基法合成的启示*[J]. 化学进展, 2010, 22(01): 81-90.
[13] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.
[14] 梁君,王福平. 烷烃加氢异构化反应[J]. 化学进展, 2008, 20(04): 457-463.
[15] 张文虎,蔡,燕,刘,湘,方,云,许建和. 芳香酮的不对称还原*[J]. 化学进展, 2007, 19(10): 1537-1553.
阅读次数
全文


摘要

二苯乙烯类低聚物的仿生合成