English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 523-544 前一篇   后一篇

• 综述与评论 •

非官能化芳烃与烯烃的直接氧化偶联反应

翁建全, 余志勤, 张国富   

  1. 浙江工业大学化学工程与材料学院 杭州 310014
  • 收稿日期:2011-08-01 修回日期:2011-09-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.20702051)资助

Direct Oxidative Coupling Between Unfunctionalized Arene and Olefin

Weng Jianquan, Yu Zhiqin, Zhang Guofu   

  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2011-08-01 Revised:2011-09-01 Online:2012-04-24 Published:2012-02-08
芳基烯烃是一类具有重要应用价值的化合物,其合成方法已被广泛研究。目前,过渡金属催化非官能化芳烃与烯烃的直接氧化偶联反应是构造芳基烯烃最高效、最简捷的方法,同Heck偶联反应相比,其底物无需预先官能化,这不仅大大缩短了反应步骤,并且能从源头上杜绝废盐的产生,特别是当以氧气或空气作氧化剂时,副产物仅为水,不会对环境造成任何危害。该方法同传统制备芳基烯烃的诸多方法相比具有原子利用率高、原子经济性好和环境友好等绿色化学的典型特性。本文根据催化剂的种类、底物类型及导向基类型对近年来过渡金属催化非官能化芳烃与烯烃的直接偶联反应进行了分类详述,并对若干重要体系的反应机理进行了详细讨论。
The direct oxidative coupling reaction between unfunctionalized arene and alkene, owing to its simple, efficient and environmentally friendly workup, has attracted much interest in organic synthesis. This green protocol can provide great advantages when compared with traditional Heck reaction, that it reduces the reaction steps and avoids the formation of waste inorganic salts. Especially when oxygen or air is used as the terminal oxidant in the process, the only by-product water is harmless to the environment. In this paper, new advances in transition metal-catalyzed direct oxidative coupling reaction between unfunctionalized arene and olefin are reviewed, which is presented on the basis of the different catalysts, the substrates with various types of directing groups. Moreover, some mechanisms of these novel reactions are also discussed in details.
Contents
1 Introduction
2 The system of palladium-catalyzed
2.1 Palladium-catalyzed intermolecular direct oxidative coupling
2.2 Palladium-catalyzed intramolecular direct oxidative coupling
3 The system of other catalysts
3.1 The system of rhodium-catalyzed
3.2 The system of ruthenium-catalyzed
3.3 The system of iron-catalyzed
3.4 The system of copper-catalyzed
4 Conclusions and outlook

中图分类号: 

()
[1] Tan K, Rozas E G, Bon R S, Guo Z, Delon C, Wetzel S, Arndt S, Alexandrov K, Waldmann H, Goody R S, Wu Y, Blankenfeldt W. J. Med. Chem., 2009, 52: 8025-8037
[2] Singh J, Zeller W, Zhou N, Hategan G, Mishra R K, Polozov A, Yu P, Onua E, Zhang J, Ramirez J L, Sigthorsson G, Thorsteinnsdottir M, Kiselyov A S, Zembower D E, Andresson T, Gurney M E. J. Med. Chem., 2010, 53: 18-36
[3] Wu C, Tang Z, Fan W, Zhu W, Wang C, Somoza E, Owino N, Li R, Ma P C, Wang Y. J. Med. Chem., 2010, 53: 139-146
[4] Lee L, Robb L M, Lee M, Davis R, Mackay H, Chavda S, Babu B, Brien E L, Risinger A L, Mooberry S L, Lee M. J. Med. Chem., 2010, 53: 325-334
[5] Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. J. Med. Chem., 2010, 53: 1397-1401
[6] Shen C, Ni C, Shen Y, Huang Y, Kuo C, Wu T, Chen C. J. Nat. Prod., 2009, 72: 168-171
[7] Kesting J R, Tolderlund I, Pedersen A F, Witt M, Jaroszewski J W, Staerk D. J. Nat. Prod., 2009, 72: 312-315
[8] Pettit G R, Thornhill A, Melody N, Knight J C. J. Nat. Prod., 2009, 72: 380-388
[9] Kingston D. J. Nat. Prod., 2009, 72: 507-515
[10] Kwak G, Kim S, Fujiki M, Masuda T, Kawakami Y, Aoki T. Chem. Mater., 2004, 16: 1864-1868
[11] Takahashi M, Nishide H, Tsuchida E, Lahti P M. Chem. Mater., 1997, 9: 11-13
[12] Beletskaya I P, Cheprakov A V. Chem. Rev., 2000, 100: 3009-3066
[13] Dounay A B, Overman L E., Chem. Rev., 2003, 103: 2945-2963
[14] Moritani I, Fujiwara Y. Tetrahedron Lett., 1967, 8: 1119-1122
[15] Fujiwara Y, Moritani I, Matsuda M. Tetrahedron, 1968, 24: 4819-4824
[16] Fujiwara Y, Moritani I, Matsuda M, Teranishi S., Tetrahedron Lett., 1968, 9: 3863-3865
[17] Fujiwara Y, Moritani I, Matsuda M. Tetrahedron Lett., 1968, 9: 633-636
[18] Danno S, Moritani I, Fujiwara Y. Tetrahedron, 1969, 25: 4819-4823
[19] Fujiwara Y, Moritani I, Asano R, Teranishi S. Tetrahedron Lett., 1968, 9: 6015-6017
[20] Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc., 1969, 91: 7166-7169
[21] Danno S, Moritani I, Fujiwara Y. Tetrahedron, 1969, 25: 4809-4813
[22] Fujiwara Y, Moritani I, Asano R, Tanaka H, Teranishi S. Tetrahedron, 1969, 25: 4815-4818
[23] Asano R, Moritani I, Sonoda A, Fujiwara Y, Teranishi S. J. Chem. Soc. (C), 1971, 3691-3692
[24] Asano R, Moritani I, Fujiwara Y, Teranishi S. Bull. Chem. Soc. Jpn., 1973, 46: 663-664
[25] Moritani I, Fujiwara Y. Synthesis, 1973: 524-533
[26] Bras J L, Muzart J. Chem. Rev., 2011, 111: 1170-1214
[27] Tsuji J, Nagashima H. Tetrahedron, 1984, 40: 2699-2702
[28] Jia C, Lu W, Kitamura T, Fujiwara Y. Org. Lett., 1999, 1: 2097-2100
[29] Yokota T, Tani M, Sakaguchi S, Ishii Y. J. Am. Chem. Soc., 2003, 125: 1476-1477
[30] Dams M, Vos D, Celen S, Jacobs P. Angew. Chem. Int. Ed., 2003, 42: 3512-3515
[31] Zhang Y, Shi B, Yu J. J. Am. Chem. Soc., 2009, 131: 5072-5073
[32] Zhang X, Fan S, He C, Wan X, Min Q, Yang J, Jiang Z. J. Am. Chem. Soc., 2010, 132: 4506-4507
[33] Mikami K, Hatano M, Terada M. Chem. Lett., 1999, 30: 55-56
[34] Thiery E, Harakat D, Bras J L, Muzart J. Organometallics, 2008, 27: 3996-4004
[35] Aouf C, Thiery E, Bras J L, Muzart J. Org. Lett., 2009, 11: 4096-4099
[36] Zhao J, Huang L, Cheng K, Zhang Y. Tetrahedron Lett., 2009, 50: 2758-2761
[37] Li P, Gu J, Ying Y, He Y, Zhang H, Zhao G, Zhu S. Tetrahedron, 2010, 66: 8387-8391
[38] Miyasaka M, Hirani K, Satoh T, Miura M. J. Org. Chem., 2010, 75: 5421-5424
[39] Jiang H, Feng Z, Wang A, Liu X, Chen Z. Eur. J. Org. Chem., 2010, 1227-1230
[40] Grimster N P, Gauntlett C, Godfrey C, Gaunt M J. Angew. Chem. Int. Ed., 2005, 44: 3125-3129
[41] Djakovitch L, Rouge P. J. Mol. Catal. A: Chem., 2007, 273: 230-239
[42] Xu Y, Wang W, Wen Z, Hartley J, Loh T. Tetrahedron Lett., 2010, 51: 3504-3507
[43] Yang Y, Chen L, Zhang Z, Zhang Y. Org. Lett., 2011, 13: 1342-1345
[44] Miura M, Tsuda T, Satoh T, Pivsa-Art S, Nomura M. J. Org. Chem., 1998, 63: 5211-5215
[45] Zhu C, Falck J R. Org. Lett., 2011, 13: 1214-1217
[46] Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc., 2007, 129: 7666-7673
[47] Li J, Mei T, Yu J. Angew. Chem. Int. Ed., 2008, 47: 6452-6455
[48] García A, Urones B, Arrayás R G, Carretero J C. Chem. Eur. J., 2010, 16: 9676-9685
[49] Horino H, Inoue N. J. Org. Chem., 1981, 46: 4416-4421
[50] Boele M, Strijidonck G, Vries A, Kamer P, Vries J, Leeuwen P. J. Am. Chem. Soc., 2002, 124: 1586-1587
[51] Lee G T, Jiang X, Prasad K, Repi O, Blacklock T J. Adv. Synth. Catal., 2005, 347: 1921-1924
[52] Wang J, Yang C, Liu L, Guo Q. Tetrahedron Lett., 2007, 48: 5449-5453
[53] Nishikata T, Lipshutz B H. Org. Lett., 2010, 12: 1972-1975
[54] Bäckvall J, Gogoll A. J. Chem. Soc. Chem. Commun., 1987, 1236-1238
[55] Amatore C, Cammoun C, Jutand A. Adv. Synth. Catal., 2007, 349: 292-296
[56] Houlden C E, Bailey C D, Ford J G, Gagné M R, Lloyd-Jones G C, Booker-Milburn K I. J. Am. Chem. Soc., 2008, 130: 10066-10067
[57] Miura M, Tsuda T, Satoh T, Nomura M. Chem. Lett., 1997, 26: 1103-1104
[58] Aoki S, Oyamada J, Kitamura T. Bull. Chem. Soc. Jpn., 2005, 78: 468-472
[59] Cho S H, Hwang S J, Chang S. J. Am. Chem. Soc., 2008, 130: 9254-9256
[60] Wu J, Cui X, Chen L, Jiang G, Wu Y. J. Am. Chem. Soc., 2009, 131: 13888-13889
[61] Shi B, Zhang Y, Lam J K, Wang D, Yu J. J. Am. Chem. Soc., 2010, 132: 460-461
[62] Engle K M, Wang D, Yu J. Angew. Chem. Int. Ed., 2010, 49: 6169-6173
[63] Lu Y, Wang D, Engle K M, Yu J. J. Am. Chem. Soc., 2010, 132: 5916-5921
[64] Baran P S, Corey E J. J. Am. Chem. Soc., 2002, 124: 7904-7905
[65] Zhang H, Ferreira E M, Stoltz B M. Angew. Chem. Int. Ed., 2004, 43: 6144-6148
[66] Schiffner JA, Wöste T H, Oestreich M. Eur. J. Org. Chem., 2010, 174-182
[67] Ferreira E M, Stoltz M B. J. Am. Chem. Soc., 2003, 125: 9578-9579
[68] Ueda S, Okada T, Nagasawa H. Chem. Commun., 2010, 2462-2464
[69] Sasuki K, Sakakura T, Tokunaga, Wada K, Tanaka M. Chem. Lett., 1988, 17: 685-688
[70] Matsumoto T, Yoshida H. Chem. Lett., 2000, 29: 1064-1065
[71] Matsumoto T, Yoshida H. Inorg. Chem. Commun., 2001, 4: 365-367
[72] Matsumoto T, Periana R A, Taube D J, Yoshida H. J. Catal., 2002, 206: 272-280
[73] Diamond S E, Szalkiewicz A, Mares F. J. Am. Chem. Soc., 1979, 101: 490-491
[74] Umeda N, Hirano K, Satoh T, Miura M. J. Org. Chem., 2009, 74: 7094-7099
[75] Chen J, Song G, Pan C, Li X. Org. Lett., 2010, 12: 5426-5429
[76] Wang F, Song G, Li X. Org. Lett., 2010, 12: 5430-5433
[77] Wang F, Song G, Du Z, Li X. J. Am. Chem. Soc., 2011, 76: 2926-2932
[78] Tsai A S, Brasse M, Bergman R G, Ellman J A. Org. Lett., 2011, 13: 540-542
[79] Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc., 2011, 133: 2350-2353
[80] Ueura K, Satoh T, Miura M. Org. Lett., 2007, 9: 1407-1409
[81] Mochida S, Hirano K, Satoh T, Miura M. Org. Lett., 2010, 12: 5776-5779
[82] Patureau F W, Glorius F. J. Am. Chem. Soc., 2010, 132: 9982-9983
[83] Park S H, Kim J Y, Chang S. Org. Lett., 2011, 13: 2372-2375
[84] Kahiuchi F, Yamauchi M, Chatani N, Murai S. Chem. Lett., 1996, 25: 111-112
[85] Kakiuchi F, Sato T, Yamauchi M, Chatani N, Murai S. Chem. Lett., 1999, 28: 19-20
[86] Weissman H, Song X, Milstein D. J. Am. Chem. Soc., 2001, 123: 337-338
[87] Kwon K, Lee D W, Yi C S. Organometallics, 2010, 29: 5748-5750
[88] Guan Z, Yan Z, Ren Z, Liu X, Liang Y. Chem. Commun., 2010, 2823-2825
[89] Bernini R, Fabrizi G, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed., 2009, 48: 8078-8081
[1] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[2] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[3] 张变香*, 赵晓芸, 吴群, 郭一力. 芳基碘鎓盐促进芳基化反应的应用[J]. 化学进展, 2013, 25(07): 1142-1148.
[4] 张晓文,尹双凤,伍水生,代威力,李文生,周小平. 有机铋化学近十年的研究进展*[J]. 化学进展, 2008, 20(06): 878-886.
[5] 龚军芳,徐晨,吴养洁. 过渡金属催化的羰基化合物及含酸性氢化合物的α-芳基化反应*[J]. 化学进展, 2006, 18(06): 752-760.