English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 512-522 前一篇   后一篇

• 综述与评论 •

衬底上石墨烯制备及改性研究

田圆, 赵倩莹, 胡靖, 周辰, 缪灵, 江建军   

  1. 华中科技大学电子科学与技术系 武汉 430074
  • 收稿日期:2011-08-01 修回日期:2011-09-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.50771047)资助

Preparation and Modification of Graphene on Substrate

Tian Yuan, Zhao Qianying, Hu Jing, Zhou Chen, Miao Ling, Jiang Jianjun   

  1. Department of Electronic Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
  • Received:2011-08-01 Revised:2011-09-01 Online:2012-04-24 Published:2012-02-08
大面积高质量石墨烯的制备对石墨烯电子特性及石墨烯基纳器件相关研究有重要意义。本文综述了近几年来衬底上制备石墨烯的相关实验以及衬底与石墨烯相互作用研究的重要进展。目前,采用化学气相沉积、外延生长等方法可在衬底表面上制备出较大面积、高质量的石墨烯材料。衬底与石墨烯相互作用和界面间晶格匹配、原子成键及电荷转移等密切相关,其对吸附石墨烯的几何结构、能带结构及电子特性等产生明显影响。实验与理论计算的结合可望加深衬底与石墨烯作用机理的理解,指导衬底上石墨烯制备及改性的进一步研究。
Since the successful isolation of the single atomic layer of graphite in 2004, graphene has drawn great interests due to its unique properties, including high mechanical strength, outstanding conductivity, high coefficient of thermal conductivity, etc. It is significant to manufacture large-scale and high-quality graphene on various substrates for the study of the characteristics of graphene and the research of the nano-devices basing on graphene. This paper selectively reviews recent experiment advances in graphene made on different substrates, SiC, SiO2, Cu, Ni, Co, Ru, for instance. Nowadays, we can obtain large area of high quality graphene by using different methods, such as CVD, epitaxial growth, mechanical separation, etc. We can manufacture graphene on nonmetals including SiC, GaAs, SiO2, and metals covering Cu, Ni, Co, Ru, Au, Ag, etc. This article especially reviews the interaction between the graphene and the substrates. The mechanism of interaction is closely related to the mismatch of the lattice, weakness of the bonds, the transformation of the electrons between the few layer graphene and substrates. Also, the interaction between them has great influences on geometry, energy band, and coefficient of thermal conductivity, phonon dispersion, optical waveguide performances and the properties of electrons of the graphene. The combination of the experiment and the calculation (such as density functional theory, tight-binding method, molecular dynamics simulation, etc.) can make a deeper understanding of the mechanism of the effects between graphene and different substrates, which can be served as a guide for further study.
Contents
1 Introduction
2 Experiment progresses of manufacturing graphene on various substrates
2.1 Developing graphene on nonmetal substrates
2.2 Developing grephene on metal substrates
3 Interactions between graphene and substrates
3.1 Interactions between graphene and nonmetal substrates
3.2 Interaction between graphene and metal substrates
3.3 Role of metal steps
3.4 Interactions between few layers graphene and substrates
4 Modification of graphene by substrates
4.1 Effects on geometry of graphene
4.2 Effects on bandgap of graphene
4.3 Effects on thermal conductivity
4.4 Other effects
5 Outlook

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
[2] Geim A K, Novoselov K S. Nature Materials, 2007, 6(3): 183-191
[3] Geim A K. Science, 2009, 324(5934): 1530-1534
[4] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321(5887): 385-388
[5] Meyer J C, Geim A, Katsnelson M, Novoselov K, Booth T, Roth S. Nature, 2007, 446(7131): 60-63
[6] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano letters, 2008, 8(3): 902-907
[7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K, Geim A K. Rev. Mod. Phys., 2009, 81: 109-162
[8] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201-204
[9] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N. Science, 2006, 312(5777): 1191-1196
[10] Gilje S, Han S, Wang M, Wang K L, Kaner R B. Nano letters, 2007, 7(11): 3394-3398
[11] Boukhvalov D, Katsnelson M. Nano Letters, 2008, 8(12): 4373-4379
[12] Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A. Science, 2009, 323(5914): 610-613
[13] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lgsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B. Nature Materials, 2010, 9(4): 315-319
[14] Okamoto Y, Miyamoto Y. The Journal of Physical Chemistry B, 2001, 105(17): 3470-3474
[15] Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A. Nano letters, 2008, 8(1): 173-177
[16] Son Y W, Cohen M L, Louie S G. Nature, 2006, 444(7117): 347-349
[17] Son Y W, Cohen M L, Louie SG. Physical Review Letters, 2006, 97(21): art. no. 216803
[18] Fiori G, Iannaccone G. Electron Device Letters, IEEE, 2007, 28(8): 760-762
[19] Han M Y, Zyilmaz B, Zhang Y, Kim P. Physical Review Letters, 2007, 98(20): art. no. 206805
[20] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319(5867): 1229-1232
[21] Tapasztó L, Dobrik G, Lambin P, Biró L P. Nature Nanotechnology, 2008, 3(7): 397-401
[22] Molitor F, Jacobsen A, Stampfer C, Güttinger J, Ihn T, Ensslin K. Physical Review B, 2009, 79(7): art. no. 075426
[23] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Chemistry), 2009, 54(18): 2657-2666
[24] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451
[25] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, Phillip N. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916
[26] Sutter P. Nature materials, 2009, 8(3): 171-172
[27] Marchini S, Günther S, Wintterlin J. Physical Review B, 2007, 76(7): art. no. 075429
[28] Coraux J, N'Diaye A T, Busse C, Michely T. Nano letters, 2008, 8(2): 565-570
[29] Dedkov Y S, Fonin M, Rüdiger U, Laubschat C. Physical Review Letters, 2008, 100(10): art. no. 107602
[30] Grüneis A, Vyalikh D V. Physical Review B, 2008, 77(19): art. no. 193401
[31] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Nano Letters, 2008, 9(1): 30-35
[32] Sutter P W, Flege J I, Sutter E A. Nature materials, 2008, 7(5): 406-411
[33] Starodub E, Maier S, Stass I, Bartelt N C, Feibelman P J, Salmeron M, McCarty K F. Physical Review B, 2009, 80(23): 235422
[34] Coraux J, N’Diaye A T, Engler M, Busse C, Wall D, Buckanie N, zu Heringdorf F J M, van Gastel R, Poelsema B, Michely T. New Journal of Physics, 2009, 11: art. no. 023006
[35] Pletikosic I, Kralj M, Pervan P, Brako R, Coraux J, N'Diaye A T, Busse C, Michely T. Physical Review Letters, 2009, 102(5): art. no. 56808
[36] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H. Nano letters, 2010, 10(2): 490-493
[37] Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S, Chen Y P. Applied Physics Letters, 2010, 96: art. no. 122106
[38] Staudenmaier L. Deutsch. Chem. Ges., 1898, 31: 1481-1487
[39] Brodie B. Ann. Chim. Phys., 1860, 59(7): 466-472
[40] Hummers W S, Offeman R E. Journal of the American Chemical Society, 1958, 80: 1339-1339
[41] Wintterlin J, Bocquet M L. Surface Science, 2009, 603(10/12): 1841-1852
[42] Sprinkle M, Soukiassian P, de Heer W A, Berger C, Conrad E H. Physica Status Solidi (RRL)-Rapid Research Letters, 2009, 3(6): A91-A94
[43] De Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Communications, 2007, 143(1/2): 92-100
[44] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T. Nature Materials, 2009, 8(3): 203-207
[45] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A. Nature Nanotechnology, 2010, 5: 727-731
[46] Hofrichter J, Szafranek B N, Otto M, Echtermeyer T J, Baus M, Majerus A, Geringer V, Ramsteiner M, Kurz H. Nano letters, 2009, 10(1): 36-42
[47] Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S. Applied Physics Letters, 2008, 93: art. no. 113103
[48] Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M S, Schaefer J A, Kong J. Nano Research, 2009, 2(6): 509-516
[49] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932): 1312
[50] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H J. Advanced Materials, 2009, 21(27): 2777-2780
[51] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706-710
[52] Juang Z Y, Wu C Y, Lo C W, Chen W Y, Huang C F, Hwang J C, Chen F R, Leou K C, Tsai C H. Carbon, 2009, 47(8): 2026-2031
[53] Fonin M, Sicot M, Zander O, Bouvron S, Leicht P, Rüdiger U, Weser M, Dedkov Y S, Horn K. arXiv: 1010.1389, 2010
[54] Sun Z, Hämäläinen S K, Sainio J, Lahtinen J, Vanmaekelbergh D, Liljeroth P. Physical Review B, 2011, 83(8): art. no. 081415
[55] Eberlein T A G, Jones R, Goss J P, Briddon P R. Physical Review B, 2008, 78(4): art. no. 045403
[56] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J. Physical Review B, 2007, 76(7): art. no. 073103
[57] Wang B, Bocquet M L, Marchini S, Günther S, Wintterlin J. Phys. Chem. Chem. Phys., 2008, 10(24): 3530-3534
[58] Kim S, Ihm J, Choi H J, Son Y W. Physical Review Letters, 2008, 100(17): art. no. 176802
[59] Hiebel F, Mallet P, Varchon F, Magaud L, Veuillen J Y. Physical Review B, 2008, 78(15): art. no. 153412
[60] Seubert A, Bernhardt J, Nerding M, Starke U, Heinz K. Surface Science, 2000, 454/456: 45-48
[61] Magaud L, Hiebel F, Varchon F, Mallet P, Veuillen J Y. Physical Review B, 2009, 79(16): art. no. 161405
[62] Kang Y J, Kang J, Chang K J. Physical Review B, 2008, 78(11): art. no. 115404
[63] Shemella P, Nayak S K. Applied Physics Letters, 2009, 94: art. no. 032101
[64] Xu Y, He K T, Schmucker S W, Guo Z, Koepke J C, Wood J D, Lyding J W, Aluru N R. Nano letters, 2011, 11(7): 2735-2742
[65] Varykhalov A, Scholz M R, Kim T K, Rader O. Physical Review B, 2010, 82(12): art. no. 121101
[66] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Physical Review Letters, 2008, 101(2): art. no. 26803
[67] Xu Z P, Buehler M J. Journal of Physics: Condensed Matter, 2010, 22: art. no. 485301
[68] Brako R, ok ević D, Lazić P, Atodiresei N. New Journal of Physics, 2010, 12: art. no. 113016
[69] Lahiri J, Miller T S, Ross A J, Adamska L, Oleynik I I, Batzill M. New Journal of Physics, 2011, 13: art. no. 025001
[70] Chen H, Zhu W, Zhang Z. Physical Review Letters, 2010, 104(18): art. no. 186101
[71] Saadi S, Abild-Pedersen F, Helveg S, Sehested J, Hinnemann B, Appel C C, Nørskov J K. The Journal of Physical Chemistry C, 2010, 114(25): 11221-11227
[72] Lacovig P, Pozzo M, Alfè D, Vilmercati P, Baraldi A, Lizzit S. Physical Review Letters, 2009, 103(16): art. no. 166101
[73] Loginova E, Bartelt N C, Feibelman P J, McCarty K F. New Journal of Physics, 2008, 10: art. no. 093026
[74] Bengaard H, Nørskov J K, Sehested J, Clausen B S, NielsenL P, Molenbroek A M, Rostrup-Nielsen J R. J. Catal., 2002, 209: 365-384
[75] Gao J, Yip J, Zhao J, Yakobson B I, Ding F. Journal of the American Chemical Society, 2011, 133: 5009-5015
[76] Loginova E, Bartelt N C, Feibelman P J, McCarty K F. New Journal of Physics, 2009, 11: art. no. 063046
[77] Loginova E, Nie S, Thürmer K, Bartelt N C, McCarty K F. Physical Review B, 2009, 80(8): art. no. 085430
[78] McCarty K F, Feibelman P J, Loginova E, Bartelt N C. Carbon, 2009, 47(7): 1806-1813
[79] Wu P, Zhang W, Li Z, Yang J, Hou J G. The Journal of Chemical Physics, 2010, 133: art. no. 071101
[80] Varchon F, Feng R, Hass J, Li X, Nguyen B N, Naud C, Mallet P, Veuillen J Y, Berger C, Conrad E H, Magaud L. Physical Review Letters, 2007, 99(12): art. no. 126805
[81] Hass J, de Heer W A, Conrad E H. Journal of Physics: Condensed Matter, 2008, 20: art. no. 323202
[82] Hong X, Posadas A, Zou K, Ahn C, Zhu J. Physical Review Letters, 2009, 102(13): art. no. 136808
[83] Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P. Physical Review Letters, 2008, 101(9): art. no. 96802
[84] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313(5789): 951-954
[85] Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D. Nano Letters, 2007, 7(6): 1643-1648
[86] Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701-1705
[87] Girit C Ö, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A. Science, 2009, 323(5922): 1705-1708
[88] Sutter P, Sadowski J T, Sutter E. Physical Review B, 2009, 80(24): art. no. 245411
[89] Brugger T, Günther S, Wang B, Dil J H, Bocquet M L, Osterwalder J, Wintterlin J, Greber T. Physical Review B, 2009, 79(4): art. no. 045407
[90] Sutter P, Hybertsen M S, Sadowski J T, Sutter E. Nano letters, 2009, 9(7): 2654-2660
[91] Sutter E, Acharya D P, Sadowski J T, Sutter P. Applied Physics Letters, 2009, 94: art. no. 133101
[92] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A. Nature Materials, 2007, 6: 770-775
[93] Zhang D M, Li Z, Zhong J F, Miao L, Jiang J J. Nanotechnology, 2011, 22: art. no. 265702
[94] Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E. Physical Review B, 2011, 83(12): art. no. 125428
[95] Nagashima A, Tejima N, Oshima C. Physical Review B, 1994, 50(23): art. no. 17487
[96] Himpsel F, Christmann K, Heimann P, Eastman D, Feibelman P J. Surface Science, 1982, 115(3): L159-L164
[97] Enderlein C, Kim Y S, Bostwick A, Rotenberg E, Horn K. New Journal of Physics, 2010, 12: art. no. 033014
[98] Bianchi M, Rienks E D L, Lizzit S, Baraldi A, Balog R, Hornek L, Hofmann Ph. Physical Review B, 2010, 81(4): art. no. 041403
[99] Rusponi S, Papagno M, Moras P, Vlaic S, Etzkorn M, Sheverdyaeva P M, Pacilé D, Brune H, Carbone C. Physical Review Letters, 2010, 105(24): art. no. 246803
[100] Ju Y S, Goodson K E. Applied Physics Letters, 1999, 74: art. no. 3005
[101] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Science, 2010, 328(5975): 213-216
[102] Gao M, Pan Y, Zhang C, Hu H, Yang R, Lu H, Cai J, Du S, Liu F, Gao H J. Applied Physics Letters, 2010, 96: art. no. 053109
[103] Zhang Z, Chen C, Guo W. Physical Review Letters, 2009, 103(18): art. no. 187204
[104] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O. Physical Review Letters, 2008, 101(15): art. no. 157601
[105] Allard A, Wirtz L. Nano Letters, 2010, 10(11): 4335-4340
[106] Wlasny I, Dabrowski P, Klusek Z. 2011, arXiv: 1102.4953v3
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[10] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[13] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[14] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[15] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
阅读次数
全文


摘要

衬底上石墨烯制备及改性研究