English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 501-511 前一篇   后一篇

• 综述与评论 •

石墨烯透明导电薄膜

唐晶晶1, 第凤1, 徐潇1, 肖迎红2, 车剑飞1   

  1. 1. 南京理工大学化工学院教育部软化学与功能材料重点实验室 南京 210094;
    2. 南京师范大学江苏省生物功能材料重点实验室 南京 210097
  • 收稿日期:2011-08-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    江苏省自然科学基金项目(No.BK2008406)、南京理工大学自主科研重点项目(No.ZDJH07);南京师范大学江苏省优势学科建设项目资助

Transparent Conductive Graphene Films

Tang Jingjing1, Di Feng1, Xu Xiao1, Xiao Yinghong2, Che Jianfei1   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210097, China
  • Received:2011-08-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
石墨烯是一种新型二维晶体材料,它独特的单原子层结构显示出许多优异的物理化学性质。以石墨烯为原料制备的透明导电薄膜继承了石墨烯的优点,与氧化铟锡(ITO)薄膜相比,具有更好的力学强度、透光性以及化学稳定性,已逐渐成为全世界范围内的研究热点。本文首先介绍了石墨烯的光电性能,然后分别从石墨烯透明导电薄膜的前驱体和制备方法两个不同的角度,归纳总结了最近几年石墨烯透明导电薄膜的研究进展,就目前所面临的问题进行了讨论,并展望了石墨烯透明导电薄膜的未来发展。
Graphene, a novel two-dimensional atomic thin crystalline material, first discovered in 2004, has become one of the hottest research areas all over the world. Its unique monolayer atomic structure has exhibited fantastic physical and chemical properties, which give rise to the great performance of transparent conductive graphene films. Compared with indium tin oxide (ITO) films, transparent conductive graphene films exhibit more outstanding performance in mechanical strenght, transparency(light transmittance) and chemical inertness. In this review, we briefly summarized the optoelectronic properties of graphene, synthesis of graphene precursors and preparing methods of the transparent conductive graphene films, then discussed the unsolved problems and prospected the future developments in the end.
Contents
1 Introduction
2 Optoelectronic property of graphene
3 Precursors to transparent conductive graphene films
3.1 Graphene oxide
3.2 Reduced graphene oxide
3.3 Exfoliated graphene
3.4 Graphene hybrid material
4 Preparation methods of transparent conductive graphene films
4.1 Vacuum filtration
4.2 Spin coating
4.3 Spray coating
4.4 Chemical vapor deposition(CVD)
4.5 Other preparation methods
5 Conclusions and prospects

中图分类号: 

()
[1] Kumar A, Zhou C W. ACS Nano, 2010, 4(1): 11-14
[2] Hu L B, Hecht D S, Gruner G. Chemical Reviews, 2010, 110(10): 5790-5844
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
[4] Geim A K, Novoselov K S. Nature Materials, 2007, 6(3): 183-191
[5] Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321(5887): 385-388
[6] Kane C L. Nature, 2005, 438(7065): 168-170
[7] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 1379-1379
[8] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F. Nature Materials, 2007, 6(3): 198-201
[9] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320(5881): 1308-1308
[10] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Nano Letters, 2007, 7(9): 2711-2717
[11] Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Nature Photonics, 2010, 4(9): 611-622
[12] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313 (5789): 951-954
[13] Buchsteiner A, Lerf A, Pieper J. Journal of Physical Chemistry B, 2006, 110(45): 22328-22338
[14] Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, De'ka'ny I. Chemistry of Materials, 2006, 18(11): 2740-2749
[15] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S J. Chemistry of Materials, 2006, 16(2): 55-158
[16] Eda G, Fanchini G, Chhowalla M. Nature Nanotechnology, 2008, 3(5): 270-274
[17] Pei S F, Zhao J P, Du J H, Ren W C, Cheng H M. Carbon, 2010, 48(15): 4466-4474
[18] Zhao J P, Pei S F, Ren W C, Gao L B, Cheng H M. ACS Nano, 2010, 4(9): 5245-5252
[19] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. ACS Nano, 2008, 2(3): 463-470
[20] Yin Z Y, Sun S Y, Salim T, Wu S X, Huang X A, He Q Y, Lam Y M, Zhang H. ACS Nano, 2010, 4(9): 5263-5268
[21] Pham V H, Cuong T V, Hur S H, Shin E W, Kim J S, Chung J S, Kim E J. Carbon, 2010, 48(7): 1945-1951
[22] Gilje S, Han S, Wang M, Wang K L, Kaner R B. Nano Letters, 2007, 7(11): 3394-3398
[23] Robinson J T, Zalalutdinov M, Baldwin J W, Snow E S, Wei Z Q, Sheehan P, Houston B H. Nano Letters, 2008, 8(10): 3441-3445
[24] Vollmer A, Feng X L, Wang X, Zhi L J, Müllen K. Applied Physics A, 2009, 94: 1-4
[25] Su C Y, Xu Y P, Zhang W J, Zhao J W, Tang X H, Tsai C H, Li L J. Chemistry of Materials, 2009, 21(23): 5674-5680
[26] Jeong S Y, Kim S H, Han J T, Jeong H J, Yang S, Lee G W. ACS Nano, 2011, 5(2): 870-878
[27] Allen M J, Tung V C, Gomez L, Xu Z, Chen L M, Nelson K S, Zhou C W, Kaner R B, Yang Y. Advanced Materials, 2009, 21(20): 2098-2102
[28] Wang S J, Geng Y, Zheng Q B, Kim J K. Carbon, 2010, 48(6): 1815-1823
[29] Park S, An J H, Jung I W, Piner R D, An S J, Li X S, Velamakanni A, Ruoff R S. Nano Letters, 2009, 9(4): 1593-1597
[30] Geng J X, Liu L J, Yang S B, Youn S C, Kim D W, Lee J S, Choi J K, Jung H T. Journal of Physical Chemistry C, 2010, 114(34): 14433-14440
[31] Yu A P, Roes I, Davies A, Chen Z W. Applied Physics Letters, 2010, 96(25): art. no. 253105
[32] Liu Y Q, Gao L, Sun J, Wang Y, Zhang J. Nanotechnology, 2009, 20(46): art. no. 465605
[33] Li D, Mueller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotechnology, 2008, 3(2): 101-105
[34] Yang F, Liu Y Q, Gao L, Sun J. Journal of Physical Chemistry C, 2010, 114(50): 22085-22091
[35] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7): 1558-1565
[36] Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Nano Letters, 2009, 9(5): 3499-3503
[37] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A, Ruoff R S. Carbon, 2009, 47(1): 145-152
[38] Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A, Car R. Nano Letters, 2008, 8(1): 36-41
[39] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S. Nano Letters, 2008, 8(6): 1704-1708
[40] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun'ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. Nature Nanotechnology, 2008, 3(9): 563-568
[41] Che J F, Shen L, Xiao Y H. Journal of Materials Chemistry, 2010, 20: 1722-1727
[42] Khan U, O'Neill A, Lotya M, De S, Coleman J N. Small, 2010, 6(7): 864-871
[43] Green A A, Hersam M C. Nano Letters, 2009, 9(12): 4031-4036
[44] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N. Journal of the American Chemical Society, 2009, 131(10): 3611-3620
[45] Hamilton C E, Lomeda J R, Sun Z Z, Tour J M, Barron A R. Nano Letters, 2009, 9(10): 3460-3462
[46] Su C Y, Lu A Y, Xu Y P, Chen F R, Khlobystov A N, Li L J. ACS Nano, 2011, 5(3): 2332-2339
[47] Wassei J K, Kaner R B. Materials, 2010, 13(3): 52-59
[48] Hong W J, Xu Y X, Lu G W, Li C, Shi G Q. Electrochemistry Communications, 2008, 10(10): 1555-1558
[49] Eda G, Unalan H E, Rupesinghe N, Amaratunga G A J, Chhowalla M. Applied Physics Letters, 2008, 93(23): art. no. 233502
[50] Eda G, Chhowalla M. Nano Letters, 2009, 9(2): 814-818
[51] Xu Y F, Wang Y, Liang J J, Huang Y, Ma Y F, Wan X J, Chen Y S. Nano Research, 2009, 2(4): 343-348
[52] Shen J F, Hu Y Z, Li C, Qin C, Shi M, Ye M X. Langmuir, 2009, 25(11): 6122-6128
[53] Jo K, Lee T, Choi H J, Park J H, Lee D J, Lee D W, Kim B S. Langmuir, 2011, 27(5): 2014-2018
[54] Choi K S, Liu F, Choi J S, Seo T S. Langmuir, 2010, 26(15), 12902-12908
[55] Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle I, Lu G Q, Cheng H M. ACS Nano, 2009, 3(7): 1745-1752
[56] Tung V C, Chen L M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y. Nano Letters, 2009, 9(5): 1949-1955
[57] King P J, Khan U, Lotya M, De S, Coleman J N. ACS Nano, 2010, 4(7): 4238-4246
[58] Bon S B, Valentini L, Kenny J M, Peponi L, Verdejo R, Lopez-Manchado M A. Physica Status Solidi A-Applications and Materials Science, 2010, 207(11): 2461-2466
[59] Hong T K, Lee D W, Choi H J, Shin H S, Kim B S. ACS Nano, 2010, 4(7): 3861-3868
[60] Tien H W, Huang Y L, Yang S Y, Wang J Y, Ma C C M. Carbon, 2011, 49(5): 1550-1560
[61] Li C Y, Li Z, Zhu H W, Wang K L, Wei J Q, Li X A, Sun P Z, Zhang H, Wu D H. Journal of Physical Chemistry C, 2010, 114(33): 14008-14012
[62] De S, King P J, Lotya M, O'Neill A, Doherty E M, Hernandez Y, Duesberg G S, Coleman J N. Small, 2010, 6(3): 458-464
[63] Orofeo C, Ago H, Hu B S, Tsuji M. Nano Research, 2011, 4(6): 531-540
[64] Vaari J, Lahtinen J, Hautojurvi P. Catalysis Letters, 1997, 44(1): 43-49
[65] Kasry A, Kuroda M A, Martyna G J, Tulevski G S, Bol A A. ACS Nano, 2010, 4(7): 3839-3844
[66] Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly K F, Ajayan P M. Chemistry of Materials, 2010, 22(11): 3457-3461
[67] Verma V P, Das S, Lahiri I, Choi W. Applied Physics Letters, 2010, 96(20): art. no. 203108
[68] Lee B J, Yu H Y, Jeong G H. Nanoscale Research Letters, 2010, 5(11): 1768-1773
[69] Jo G, Choe M, Cho C Y, Kim J H, Park W, Lee S, Hong W K, Kim T W, Park S J, Hong B H, Kahng Y H, Lee T. Nanotechnology, 2010, 21(17): art. no. 175201
[70] De Arco L G, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C W. ACS Nano, 2010, 4(5): 2865-2873
[71] Kalita G, Masahiro M, Uchida H, Wakita K, Umeno M. Materials Letters, 2010, 64(20): 2180-2183
[72] Coraux J, Ndiaye A T, Busse C, Michely T. Nano Letters, 2008, 8(2): 565-570
[73] Starr D E, Pazhetnov E, Stadnichenko A, Boronin A, Shaikhutdinov S. Surface Science, 2006, 600(13): 2688-2695
[74] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S. Nano Letters, 2009, 9(12): 4359-4363
[75] Grüneis1 A, Kummer K, Vyalikh D V. New Journal of Physics, 2009, 11: art. no. 073050
[76] Liu W, Jackson B L, Zhu J, Miao C Q, Heui C, Chung, Park Y J, Sun K, Woo J, Xie Y H. ACS Nano, 2010, 4(7): 3927-3932
[77] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932): 1312-1314
[78] Li X, Cai W, Colombo L, Ruoff R S. Nano Letters, 2009, 9(12): 4268-4272
[79] Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C, Cheng H M. Advanced Materials, 2009, 21(17): 1756-1760
[80] Zhu Y W, Cai W W, Piner R D, Velamakanni A, Ruoff R S. Applied Physics Letters, 2009, 95(10): art. no. 103104
[81] Lv X, Huang Y, Liu Z B, Tian J G, Wang Y, Ma Y F, Liang J J, Fu S P, Wan X J, Chen Y S. Small, 2009, 5(14): 1682-1687
[82] Biswas S, Drzal L T. Nano Letters, 2009, 9(1): 167-172
[83] De S, Coleman J N. ACS Nano, 2010, 4(5): 2710-2713
[84] Pan S, Aksay I A. ACS Nano, 2011, 5(5): 4073-4083
[85] Zhou X, Liu Z. Chemical Communications, 2010, 2611-2613
[86] Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W, Xie S. Nano Letters, 2007, 7(8): 2307-2311
[87] Zhang M, Fang S L, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R, Baughman R H. Science, 2005, 309(5738): 1215-1219
[88] Su C Y, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai C H, Huang Y, Li L J. ACS Nano, 2010, 4(9): 5285-5292
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[5] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[6] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[7] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[8] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[9] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[10] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[11] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[14] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[15] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
阅读次数
全文


摘要

石墨烯透明导电薄膜