English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 492-500 前一篇   后一篇

• 综述与评论 •

垂直取向介孔薄膜的制备

张倩, 单锋, 陆学民, 路庆华   

  1. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2011-08-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.50902094,50925310)资助

Preparation of Vertically Oriented Mesoporous Thin Films

Zhang Qian, Shan Feng, Lu Xuemin, Lu Qinghua   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2011-08-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
垂直取向介孔薄膜是指薄膜内部孔道垂直于基底定向排列的一类介孔薄膜,其在催化、吸附与分离、化学传感器、太阳能电池等领域具有广阔的应用前景。本文就近几年内垂直取向介孔薄膜的制备方法以及在若干领域的应用进行了回顾和综述。在此基础上,对这种特殊的薄膜材料未来的发展进行了展望。
The macroscopic alignment of mesochannels in films and its control are quite significant for advanced materials with controlled functions. However, the direction of mesochannels in almost all mesoporous/mesostructured films is parallel to the substrate. The films containing vertically oriented mesochannels in uniform direction are of wide prospects due to their huge potential applications including catalysis, adsorption and separation, high-sensitive chemical sensors, solar cells and so forth. Here some important characterization techniques are presented, such as cross-sectional TEM, X-ray diffraction and grazing-incident small-angle X-ray scattering. Simultaneously, various preparation methods of vertically oriented mesoporous thin films in recent years are reviewed including template-based method, using external fields, modification of substrate and other methods. We also briefly summarize its applications in selective membrane, preparation of vertically oriented metal films and electrochromic display devices. In addition, the development of vertically oriented mesoporous thin films in the future is expected.
Contents
1 Introduction
2 Key characterization techniques of vertically oriented mesoporous thin films
2.1 Cross-sectional electron microscope
2.2 X-ray diffraction
2.3 Grazing-incident small-angel X-ray scattering
3 Methods to prepare vertically oriented mesoporous thin films
3.1 Template-based method
3.2 External field
3.3 Modification of substrate
3.4 Other methods
4 Applications of vertically oriented mesoporous thin films
4.1 Selective membrane
4.2 Preparation of vertically oriented metal films as hard template
4.3 Electrochromic display devices
5 Conclusion and outlook

中图分类号: 

()
[1] He C, Li J J, Cheng J, Li L D, Li P, Hao Z P, Xu Z P. Ind. Eng. Chem. Res., 2009, 48: 6930-6936
[2] Kisler J M, Dahler A, Stevens G W, O'Connor A. J. Micropor. Mesopor. Mat., 2001, 44: 769-774
[3] Stein A, Melde B J, Schroden R C. Adv. Mater., 2000, 12: 1403-1419
[4] Tsai C Y, Tam S Y, Lu Y F, Brinker C J. J. Membrane. Sci., 2000, 169: 255-268
[5] Wang C, Bai H L. Ind. Eng. Chem. Res., 2011, 50: 3842-3848
[6] Xiao F S, Han Y, Yu Y, Meng X J, Yang M, Wu S. J. Am. Chem. Soc., 2002, 124: 888-889
[7] Fan H Y, Bentley H R, Kathan K R, Clem P, Lu Y F, Brinker C J. J. Non-Cryst. Solids, 2001, 285: 79-83
[8] 张学骜(Zhang X A), 刘长利(Liu C L), 钱斯文(Qian S W), 吴晓森(Wu X S), 王建方(Wang J F), 吴文健(Wu W J). 化学进展(Progress in Chemistry), 2006, 18: 1322-1329
[9] Yamauchi Y, Nagaura T, Ishikawa A, Chikyow T, Inoue S. J. Am. Chem. Soc., 2008, 130: 10165-10170
[10] Yamauchi Y, Sawada M, Noma T, Ito H, Furumi S, Sakka Y, Kuroda K. J. Mater. Chem., 2005, 15: 1137-1140
[11] Su B, Lu X M, Lu Q H. J. Am. Chem. Soc., 2008, 130: 14356-14357
[12] Su B, Lu X M, Lu Q H. Langmuir, 2008, 24: 9695-9699
[13] Su B, Lu X M, Lu Q H, Li X, You C Q, Jia J. Chem. Mater., 2009, 21: 4970-4976
[14] Hillhouse H W, van Egmond J W, Tsapatsis M, Hanson J C, Larese J Z. Micropor. Mesopor. Mat., 2001, 44: 639-643
[15] Freer E M, Krupp L E., Hinsberg W D, Rice P M, Hedrick J L, Cha J N, Miller R D, Kim H C. Nano Lett., 2005, 5: 2014-2018
[16] Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Nat. Mater., 2007, 6: 602-608
[17] Hara M, Nagano S, Seki T. J. Am. Chem. Soc., 2010, 132: 13654-13656
[18] Revenant C, Leroy F, Lazzari R, Renaud G, Henry C R. Phys. Rev. B, 2004, 69: art. no. 035411
[19] Koganti V R, Dunphy D, Gowrishankar V, McGehee M D, Li X F, Wang J, Rankin S E. Nano Lett., 2006, 6: 2567-2570
[20] Lu Q Y, Gao F, Komarneni S, Mallouk T E. J. Am. Chem. Soc., 2004, 126: 8650-8651
[21] Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T, Teramae N. Nat. Mater., 2004, 3: 337-341
[22] Firouzi A, Schaefer D J, Tolbert S H, Stucky G D, Chmelka B F. J. Am. Chem. Soc., 1997, 119: 9466-9477
[23] Wu K C W, Jiang X F, Yamauchi Y. J. Mater. Chem., 2011, 21: 8934-8939
[24] Fan J, Boettcher S W, Tsung C K, Shi Q, Schierhorn M, Stucky G D. Chem. Mater., 2008, 20: 909-921
[25] Goux A, Etienne M, Aubert E, Lecomte C, Ghanbaja J, Walcarius A. Chem. Mater., 2009, 21: 731-741
[26] Sibottier E, Sayen S, Gaboriaud F, Walcarius A. Langmuir, 2006, 22: 8366-8373
[27] Goux A, Ghanbaja J, Walcarius A. J. Mater. Sci., 2009, 44: 6601-6607
[28] Koganti V R, Rankin S E. J. Phys. Chem. B, 2005, 109: 3279-3283
[29] Richman E K, Brezesinski T, Tolbert S H. Nat. Mater., 2008, 7: 712-717
[30] Chen B C, Lin H P, Chao M C, Mou C Y, Tang C Y. Adv. Mater., 2004, 16: 1657-1661
[31] Wu C W, Ohsuna T, Kuwabara M, Kuroda K. J. Am. Chem. Soc., 2006, 128: 4544-4545
[32] Guillemin Y, Etienne M, Aubert E, Walcarius A. J. Mater. Chem., 2010, 20: 6799-6807
[33] Tominaka S, Wu C W, Momma T, Kuroda K, Osaka T. Chem. Commun., 2008, 2888-2890
[34] Lin M L, Huang C C, Lo M Y, Mou C Y. J. Phys. Chem. C, 2008, 112: 867-873
[35] Weng W, Higuchi T, Suzuki M, Fukuoka T, Shimomura T, Ono M, Radhakrishnan L, Wang H J, Suzuki N, Oveisi H, Yamauchi Y. Angew. Chem. Int. Ed., 2010, 49: 3956-3959
[1] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[2] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[3] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[4] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[5] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[6] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
[7] 曾峰, 潘真真, 张梦, 黄永焯, 崔彦娜, 徐勤. 有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用[J]. 化学进展, 2015, 27(10): 1356-1373.
[8] 卞书娟, 吴宏庆, 江旭恒, 龙亚峰, 陈勇. 复合介孔二氧化硅膜的制备及应用[J]. 化学进展, 2014, 26(08): 1352-1360.
[9] 邵再东, 张颖, 程璇. 新型力学性能增强二氧化硅气凝胶块体隔热材料[J]. 化学进展, 2014, 26(08): 1329-1338.
[10] 陈凯玲, 赵蕴慧*, 袁晓燕*. 二氧化硅粒子的表面化学修饰——方法、原理及应用[J]. 化学进展, 2013, 25(01): 95-104.
[11] 郭风, 朱桂茹, 高从堦. 有机-无机杂化介孔二氧化硅在环境保护中的应用[J]. 化学进展, 2011, 23(6): 1237-1250.
[12] 王静, 刘爽, 张春, 徐辉碧, 杨祥良. 手性纳米二氧化硅的制备和应用[J]. 化学进展, 2011, 23(4): 669-678.
[13] 吴国友 程璇 余煜玺 张颖. 常压干燥制备二氧化硅气凝胶*[J]. 化学进展, 2010, 22(10): 1892-1900.
[14] 李丽,季伟捷,区泽棠. 介孔SiO2负载的纳米金及其催化应用[J]. 化学进展, 2009, 21(09): 1742-1749.
[15] 徐世美,张淑芬,杨锦宗. 有机-无机纳米复合水凝胶* [J]. 化学进展, 2009, 21(05): 1008-1014.
阅读次数
全文


摘要

垂直取向介孔薄膜的制备