English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 483-491 前一篇   后一篇

• 综述与评论 •

离子液体介导制备5-羟甲基糠醛

胡磊, 孙勇, 林鹿   

  1. 厦门大学能源研究院 厦门 361005
  • 收稿日期:2011-08-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB732201)、国家自然科学基金项目(No.21106121);中央高校基本业务费专项资金项目(No.2010121077)资助

Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural

Hu Lei, Sun Yong, Lin Lu   

  1. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received:2011-08-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
5-羟甲基糠醛(5-HMF)被认为是一种非常重要的平台化合物。利用离子液体介导制备5-HMF的研究已经引起了人们越来越广泛的重视,并取得了较为理想的研究成果。本文对离子液体介导制备5-HMF的研究成果进行了系统的归纳和总结,着重介绍了离子液体作为反应溶剂和催化剂在5-HMF制备过程中的应用以及离子液体介导制备5-HMF的形成机理和影响因素,并对离子液体介导制备5-HMF的研究前景进行了展望,以期为5-HMF的进一步研究提供思路和参考。
5-Hydroxymethylfurfural (5-HMF) is considered as a very important biomass-based platform compound that can be used to synthesize a broad range of liquid fuels and chemicals, which are mainly derived from fossil resources so far. The study of the production of 5-HMF in the presence of ionic liquids has increasingly attracted more attention. In this review, the recent achievements of ionic liquids-mediated formation of 5-HMF are systematically summarized, including applications of ionic liquids as reaction solvents and catalysts in the production of 5-HMF, influence factors and formation mechanisms in the ionic liquids-mediated formation of 5-HMF. The future research trends of ionic liquids-mediated formation of 5-HMF are suggested.
Contents
1 Introduction
2 Production of 5-HMF using ionic liquids as reaction solvents
2.1 Fructose as feedstock
2.2 Glucose as feedstock
2.3 Sucrose as feedstock
2.4 Cellulose, starch and inulin as feedstock
3 Production of 5-HMF using ionic liquids as catalysts
3.1 Ionic liquids as base catalysts
3.2 Ionic liquids as acid catalysts
4 Mechanisms of ionic liquids-mediated formation of 5-HMF
5 Influence factors of ionic liquids-mediated formation of 5-HMF
5.1 Reaction temperature
5.2 Heating method
5.3 Reaction time
5.4 Catalyst loading
5.5 Substrate loading
5.6 Water content
5.7 Co-solvent
5.8 Extraction method
6 Conclusions and perspectives

中图分类号: 

()
[1] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5): 1979-1985
[2] Zhao H B, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316(5831): 1597-1600
[3] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147): 982-986
[4] Qi X H, Watanabe M, Aidaa T M, Smith R L. Green Chem., 2008, 10(7): 799-805
[5] Hansen T S, Woodley J M, Riisager A. Carbohydr. Res., 2009, 344(18): 2568-2572
[6] Stahlberg T, Sørensen M G, Riisager A. Green Chem., 2010, 12(2): 321-325
[7] Zhang Z H, Zhao Z B. Bioresource Technol., 2011, 102(4): 3970-3972
[8] Chan J Y G, Zhang Y. ChemSusChem, 2009, 2(8): 731-734
[9] Amiri H, Karimi K, Roodpeyma S. Carbohydr. Res., 2010, 345(15): 2133-2138
[10] Ohara M, Takagaki A, Nishimura S, Ebitani K. Appl. Catal. A: Gen., 2010, 383(1/2): 149-155
[11] Tao F R, Song H L, Chou L J. Carbohydr. Res., 2011, 346(1/3): 58-63
[12] Roman-Leshkov Y, Chheda J N, Dumesic J A. Science, 2006, 312(5782): 1933-1937
[13] Huber G W, Chheda J N, Barrett C J, Dumesic J A. Science, 2005, 308(5727): 1446-1450
[14] Yadav G D, Borkar I V. Ind. Eng. Chem. Res., 2008, 47(10): 3358-3363
[15] Chheda J N, Huber G W, Dumesic J A. Angew. Chem. Int. Ed., 2007, 46(38): 7164-7183
[16] Yan H P, Yang Y, Tong D M, Xiang X, Hu C W. Catal. Commun., 2009, 10(11): 1558-1563
[17] Lilga M A, Hallen R T, Gray M. Top. Catal., 2010, 53(15/18): 1264-1269
[18] Qi X H, Watanabe M, Aida T M, Smith R L. Catal. Commun., 2008, 9(13): 2244-2249
[19] 李艳 (Li Y), 魏作君 (Wei Z J), 陈传杰 (Chen C J), 刘迎新 (Liu Y X). 化学进展 (Progress in Chemistry), 2010, 22(8): 1063-1069
[20] Watanabe M, Aizawa Y, Iida T, Aida T M, Levy C, Sue K, Inomata H. Carbohydr. Res., 2005, 340(12): 1925-1930
[21] Tong X L, Ma Y, Li Y D. Appl. Catal. A: Gen., 2010, 385(1/2): 1-13
[22] Shimizu K I, Uozumi R, Satsuma A. Catal. Commun., 2009, 10(14): 1849-1853
[23] Tan S S Y, MacFarlane D R. Top. Curr. Chem., 2009, 290: 311-339
[24] Bao Q X, Qiao K, Tomida D, Yokoyama C. Catal. Commun., 2008, 9(6): 1383-1388
[25] Lima S, Neves P, Antunes M M, Pillinger M, Ignatyev N, Valente A A. Appl. Catal. A: Gen., 2009, 363(1/2): 93-99
[26] Binder J B, Cefali A V, Blankc J J, Raines R T. Energy Environ. Sci., 2010, 3(6): 765-771
[27] Li C Z, Zhao Z B, Cai H L, Wang A Q, Zhang T. Biomass Bioenergy, 2011, 35(5): 2013-2017
[28] Fayet C, Gelas J. Carbohydr. Res., 1983, 122(1): 59-68
[29] Lansalot-Matras C, Moreau C. Catal. Commun., 2003, 4(10): 517-520
[30] Zhang Y T, Du H B, Qian X H, Chen E Y X. Energy Fuels, 2010, 24(4): 2410-2417
[31] Chan J Y G, Zhang Y. ChemSusChem, 2009, 2(8): 731-734
[32] Lai L K, Zhang Y G. ChemSusChem, 2011, 3(11): 1257-1259
[33] Wei Z J, Li Y, Thushara D, Liu Y X, Ren Q L. J. Taiwan Inst. Chem. Eng., 2011, 42(2): 363-370
[34] Zhang Z H, Wang Q, Xie H B, Liu W J, Zhao Z B. ChemSusChem, 2011, 4(1): 131-138
[35] Stahlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A. Chem. Eur. J., 2011, 17(5): 1456-1464
[36] Hu S Q, Zhang Z F, Song J L, Zhou Y X, Han B X. Green Chem., 2009, 11(11): 1746-1749
[37] Li C Z, Zhang Z H, Zhao Z B K. Tetrahedron Lett., 2009, 50(38): 5403-5405
[38] Yong G, Zhang Y G, Ying J Y. Angew. Chem. Int. Ed., 2008, 120(48): 9485-9488
[39] Qi X H, Watanabe M, Aida T M, Smith R L. ChemSusChem, 2010, 3(9): 1071-1077
[40] Cao Q, Guo X C, Yao S X, Guan J, Wang X Y, Mu X D, Zhang D K. Carbohydr. Res., 2011, 346(7): 956-959
[41] Cao Q, Guo X C, Guan J, Mu X D, Zhang D K. Appl. Catal. A: Gen., 2011, 403(1/2): 98-103
[42] Yuan Z S, Xu C B, Cheng S N, Leitch M. Carbohyd. Res., 2011, 346(13): 2019-2023
[43] Stahlberg T, Fu W J, Woodley J M, Riisager A. ChemSusChem, 2011, 4(4): 451-458
[44] Moreau C, Finiels A, Vanoye L. J. Mol. Catal. A: Chem., 2006, 253(1/2): 165-169
[45] Su Y, Brown H M, Huang X W, Zhou X D, Amonette J E, Zhang Z C. Appl. Catal. A: Gen., 2009, 361(1/2): 117-122
[46] Tan M X, Zhao L, Zhang Y G. Biomass Bioenergy, 2011, 35(3): 1367-1370
[47] Wang P, Yu H B, Zhan S H, Wang S Q. Bioresource Technol., 2011, 102(5): 4179-4183
[48] Binder J B, Raines R T. PNAS, 2010, 107(10): 4516-4521
[49] Su Y, Brown H M, Li G S, Zhou X D, Amonette J E, Fulton J L, Camaioni D M, Zhang Z C. Appl. Catal. A: Gen., 2011, 391(1/2): 436-442
[50] Kim B, Jeong J, Lee D, Kim S Y, Yoon H J, Lee Y S, Cho J K. Green Chem., 2011, 13(6): 1503-1506
[51] Qi X H, Watanabe M, Aida T M, Smith R L. Green Chem., 2010, 12(10): 1855-1860
[52] Hu S Q, Zhang Z F, Zhou Y X, Han B X, Fan H L, Li W J, Song J L, Xie Y. Green Chem., 2008, 10(12): 1280-1283
[53] Tong X L, Li Y D. ChemSusChem, 2010, 3(3): 350-355
[54] 张正源 (Zhang Z Y), 张宗才 (Zhang Z C), 李洁 (Li J), 戴红 (Dai H), 李立新 (Li L X). 化学研究与应用 (Chemical Research and Application), 2010, 22(3): 257-262
[55] Pidko E A, Degirmenci V, Van Santen R A, Hensen E J M. Angew. Chem. Int. Ed., 2010, 49(14): 2530-2534
[56] Pidko E A, Degirmenci V, Van Santen R A, Hensen E J M. Inorg. Chem., 2010, 49(21): 10081-10091
[57] Guan J, Cao Q A, Guo X C, Mu X D. J. Theor. Comput. Chem., 2011, 963(2/3): 453-462
[58] Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Chem. Rev., 2011, 111(2): 397-417
[59] Lee J W, Ha M G, Yi Y B, Chung C H. Carbohyd. Res., 2011, 346(2): 177-182
[60] Yi Y B, Lee J W, Hong S S, Choi Y H, Chung C H. J. Ind. Eng. Chem., 2011, 17(1): 6-9
[61] Chun J A, Lee J W, Yi Y B, Hong S S, Chung C H. Starch-Starke, 2010, 62(6): 326-330
[62] Qi X H, Watanabe M, Aida T M, Smith R L. ChemSusChem, 2009, 2(10): 944-946
[63] Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Energy Fuels, 2010, 24(2): 737-745
[64] Chidambaram M, Bell A T. Green Chem., 2010, 12(7): 1253-1262
[65] McNeffa C V, Nowlana D T, McNeffa L C, Yana B, Fedieb R L. Appl. Catal. A: Gen., 2010, 384(1/2): 65-69
[66] Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, Konig B. Green Chem., 2009, 11(12): 1948-1954
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[12] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
阅读次数
全文


摘要

离子液体介导制备5-羟甲基糠醛