English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 471-482 前一篇   后一篇

• 综述与评论 •

片/板状短孔道SBA-15的控制合成及应用

马力群, 翟尚儒, 刘娜, 翟滨, 安庆大   

  1. 大连工业大学轻工与化学工程学院 大连 116034
  • 收稿日期:2011-07-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    辽宁省自然科学基金项目(No.2010401)、辽宁省高校优秀人才支持计划(No.201005);大连市科学技术基金项目(No.2010J21DW021)资助

Controlled Fabrication and Application of Platelet SBA-15 Materials

Ma Liqun, Zhai Shangru, Liu Na, Zhai Bin, An Qingda   

  1. Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received:2011-07-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
有序介孔材料家族中,SBA-15因具有较大的孔径尺寸、规则可调的孔道结构以及卓越的机械和水热稳定性而备受关注。最近,片/板状短孔道SBA-15由于更有利于分子快速扩散和质量传递成为介孔材料研究领域的热点。目前合成片/板状短孔道SBA-15的主要方法有有机物辅助、金属离子诱导及多重模板剂协同效应。根据不同类别添加剂的作用机制,本文综述了片/板状短孔道SBA-15的控制合成方法及其在催化、吸附和生物分子固定等不同领域的最新进展,并对其应用前景进行了展望。
Ordered SBA-15 materials are of great importance in the materials field due to the tunable pore size within 5-30 nm and excellent mechanical and hydrothermal stability in comparison with other siliceous mesostructures. More recently, platelet SBA-15 with short channels have attracted great attention because of the favorable effect for molecular delivery and mass transfer. Platelet SBA-15 materials have been synthesized using various effective synthesis pathways including co-solvent effect of alkane molecules, inducing effect of metal ions and syngeristic effect of multi-surfactants. Based on different assembly mechanisms, the current progress in designed assembly and applications of platelet SBA-15 in catalysis, adsorption and biomedical molecule immobilization are reviewed, and the perceptive on potentiality of this newcomer with fascinating characteristics is also prospected.
Contents
1 Introduction
2 Designed synthesis of platelet SBA-15 with short channels
2.1 Co-solvent effect of alkane molecules
2.2 Inducing effect of metal ions
2.3 Prompting effect of inorganic salts
2.4 Other methods
3 Advanced applications of platelet SBA-15
3.1 Favorable catalysts
3.2 Favorable supports
3.3 Adsorption of biomedical molecules
3.4 Other applications
4 Conclusion and outlook

中图分类号: 

()
[1] Kresge C T, Leonowicz M E, Roth W J. Nature, 1992, 359: 710-712
[2] Beck J S, Vartuli J C, Roth W J. J. Am. Chem. Soc., 1992, 114: 10834-10843
[3] Anagisawa T Y, Shimizu T, Kuroda K. Bull. Chem. Soc. Jpn., 1990, 63: 988-992
[4] Inagaki S, Fukushima Y, Kuroda K. Chem. Commun., 1993, 680-682
[5] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G, Chmelka B F, Stucky G. Science, 1998, 279: 548-552
[6] Chen S Y, Lee J, Cheng S F. J. Catal., 2010, 270: 196-205
[7] Chen S Y, Tang S Y, Lee J F, Jang L, Tatsumi T, Cheng S F. J. Mater. Chem., 2011, 21: 2255-2265
[8] Chen C S, Chen C C, Chen C T, Kao H M. Chem. Commun., 2011, 2288-2290
[9] Tian R J, Sun J M, Zhang H, Ye M L, Xie C H, Dong J, Hu J W, Ma D, Bao X H, Zou H F. Electrophoresis, 2006, 27: 742-748
[10] Zhu L, Zhang C, Liu Y, Wang D, Chen J. J. Mater. Chem., 2010, 20: 1553-1559
[11] Fan J, Lei J, Wang L, Yu C Z, Tu B, Zhao D Y. Chem. Commun., 2003, 2140-2141
[12] Sun J, Zhang H, Tian R J, Ma D, Bao X H, Su D, Zou H F. Chem. Commun., 2006, 1322-1324
[13] Schmidt-Winkel P, Lukens W, Zhao D, Yang P, Chmelka B F, Stucky G D. J. Am. Chem. Soc., 1999, 121: 254-255
[14] Sun J, Zhang H, Ma D, Chen Y, Bao X H, Klein-Hoffmann A, Su D. Chem. Commun., 2005, 5343-5345
[15] Zhao D, Sun J, Li Q, Stucky G D. Chem. Mater., 2000, 12: 275-281
[16] Ji X L, Lee K, Monjauze M, Linda F. Chem. Commun., 2008, 4288-4290
[17] Sayari A, Han B, Yang Y. J. Am. Chem Soc., 2004, 126: 14348-14349
[18] Liu J, Li C M, Yang Q H, Yang J, Li C. Langmuir, 2007, 23: 7255-7262
[19] Boissiere C, Larbot A, Lee A, Kooyman P J, Prouzet E. Chem. Mater., 2000, 12: 2902-2908
[20] Feng P, Bu X, Stucky G D, Pine D J. J. Am. Chem. Soc., 2000, 122: 994-1000
[21] Cui X G, Moon S W, Zin W C, Ha C S. Mater. Lett., 2006, 60: 3857-3860
[22] Zhang H, Sun J M, Ma D, Bao X H, Hoffmann A K, Weinberg G, Su D S, Schlogl R. J. Am. Chem. Soc., 2004, 126: 7440-7441
[23] Brinker C J. J. Non-Crystal Solids, 1998, 100: 31-50
[24] Zhang H, Sun J M, Ma D, Weinberg G, Su D S, Bao X H. J. Phys. Chem. B, 2006, 110: 25908-25915
[25] Johansson E M, Córdoba J M, Odén M. Mater. Lett., 2009, 63: 2129-2131
[26] Johansson E M, Córdoba J M, Odén M. Micropor. Mesopor. Mater., 2010, 33: 66-74
[27] Cao L, Kruk M. J. Colloid Interface Sci., 2011, 361: 472-476
[28] Chen S Y, Jang L Y, Cheng S F. Chem. Mater., 2004, 16: 4174-4180
[29] Chen S Y, Tang C Y, Chuang W T, Lee J J, Tsai Y L, Chan C C, Lin C Y, Liu Y C, Cheng S F. Chem. Mater., 2008, 20: 3906-3916
[30] Ruthstein S, Schmidt J, Kesselman E, Talmon Y, Goldfarb D. J. Am. Chem. Soc., 2006, 128: 3366-3374
[31] Chen S Y, Chen Y T, Lee J J, Cheng S F. J. Mater. Chem., 2011, 21: 5693-5701
[32] Chen S Y, Tsai H D, Chuang W T, Lee J J, Tang C Y, Lin C Y, Cheng S F. J. Phys. Chem. C, 2009, 113: 15226-15238
[33] Li F, Wang J G, Liu Y P, Zhou H J, Chen T H. J. Mater. Sci., 2009, 44: 6505-6511
[34] 袁金芳(Yuan J F), 李健生(Li J S), 顾娟(Gu J), 夏敏亚(Xia M Y), 孙秀云(Sun X Y), 韩卫清(Han W Q), 王连军(Wang L J). 化学学报(Acta Chimica Sinica), 2009, 67(11): 1271-1275
[35] 袁金芳(Yuan J F), 李健生(Li J S), 申战辉(Shen Z H), 顾娟(Gu J), 李慧君(Li H J), 孙秀云(Sun X Y), 王连军(Wang L J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2011, 40(3): 473-478
[36] Chan Y T, Lin H P, Mou C Y, Liu S T. Micropor. Mesopor. Mater., 2009, 123: 331-338
[37] Linton P, Alfredsson V. Chem. Mater., 2008, 20: 2878-2880
[38] Flodström K, Wennerström H, Alfredsson V. Langmuir, 2004, 20: 680-688
[39] Flodström K, Teixeira C V, Amenitsch H, Alfredsson V, Lindén M. Langmuir, 2004, 20: 4885-4891
[40] Evans D F, Wennerström H. The Colloidal Domain: Where Physics, Chemistry and Biology meet, 2nd ed. New York: Wiley-VCH, 1999
[41] Goia D V, Matijevíc E. Colloids Surf. A, 1999, 146: 139-152
[42] Privman V, Goia D V, Park J, Matijevíc E. J. Colloid Interface Sci., 1999, 213: 36-45
[43] Linton P, Wennerstrom H, Alfredsson V. Phys. Chem. Chem. Phys., 2010, 12: 3852-3858
[44] 唐涛(Tang T), 李小安(Li X A), 赵燕玲(Zhao Y L), 徐耀(Xu Y), 吴东(Wu D), 孙予罕(Sun Y H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(3): 772-777
[45] Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D. J. Am. Chem. Soc., 2002, 124: 4556-4557
[46] Yu C Z, Fan J, Tian B Z, Zhao D Y. Chem. Mater., 2004, 16: 889-898
[47] Kubo S, Kosuge K. Langmuir, 2007, 23: 11758-11761
[48] Suiandi, Park S E, Han D S, Han S C, Jong M, Ohsuna T. Chem. Commun., 2006, 4131-4133
[49] Hwang Y K, Chang J C, Park S E, Kim D S, Kwon Y U, Jhung S H, Hwang J S, Park M S. Angew. Chem. Int. Ed., 2005, 117: 562-566
[50] Hwang Y K, Chang J S, Kwon Y U, Park S E. Micropor. Mesopor. Mater., 2004, 68: 21-28
[51] Wang X G, Lin K S, Chan J C C, Cheng S F. J. Phys. Chem. B, 2005, 109: 1763-1771
[52] Jiang N Z, Jin H, Mo Y H, Prasetyanto E A, Park S E. Micropor. Mesopor. Mater., 2011, 141: 16-19
[53] Wang Y G, Zhang F Y, Wang Y Q, Ren J W, Li C L, Liu X H, Guo Y, Guo Y L, Lu G Z. Mater. Chem. Phys., 2009, 115: 649-655
[54] Zhu Y S, Li H, Xu J Q, Yuan H, Wang J J, Li X X. Cryst. Eng. Commun., 2011, 13: 402-405
[55] Lee H, Kim J H, Stucky G D, Shi Y F, Park C H, Kim J M. J. Mater. Chem., 2010, 20: 8483-8487
[56] Chen B C, Lin H P, Chao M C, Mou C Y, Tang C Y. Adv. Mater., 2004, 16: 1657-1661
[57] Yeh Y O, Lin H P, Tang C Y, Mou C Y. J. Colloid Interface Sci., Doi: 10.1016/j. jcis. 2011.07.011
[58] Saravanamurugan S, Sujandi, Han D S, Koo J B, Park S E. Catal. Commun., 2008, 9: 158-163
[59] Sujandi, Prasetyanto E A, Park S E. Appl. Catal. A: Gen., 2008, 350: 244-251
[60] Cheng S F, Wang X G, Chen S Y. Top. Catal., 2009, 52: 681-687
[61] Chen S Y, Yokoi T, Tang C Y, Jang L Y, Tatsumi T, Chan J C C, Cheng S. Green Chem., 2011, 13: 2920-2930
[62] Crisci A J, Tucker M H, Lee M Y, Jang S G, Dumesic J A, Scott S L. ACS Catal., 2011, 1: 719-728
[63] Prieto G, Martnez A, Murciano R, Arribas M A. Appl. Catal. A: Gen., 2009, 367: 146-156
[64] 袁金芳(Yuan J F), 李健生(Li J S), 王 放(Wang F), 孙秀云(Sun X Y), 沈锦优(Shen J Y), 韩卫清(Han W Q), 王连军(Wang L J). 催化学报(Chinese Journal of Catalysis), 2011, 32(6): 1069-1075
[65] Wang F, Li J S, Yuan J F, Sun X Y, Shen J Y, Han W Q, Wang L J. Catal. Commun., 2011, 12: 1415-1419
[66] Lei J, Fan J, Yu C Z, Zhang L, Jiang S, Tu B, Zhao D Y. Micropor. Mesopor. Mater., 2004, 73: 121-128
[67] Liu J, Bai S Y, Zhong H, Li C, Yang Q H. J. Phys. Chem. C, 2010, 114: 953-961
[68] Tang T, Li X A, Xu Y, Wu D, Sun Y H, Xu J, Deng F. Colloids Surf. B: Biointerfaces, 2011, 84: 571-578
[69] Tang T, Zhao Y L, Xu Y, Wu D, Sun Y H, Deng F. Appl. Surf. Sci., 2011, 257: 6004-6009
[70] Cucinotta F, Carniato F, Paul G, Bracco S, Bisio C, Caldaelli S, Marchese L. Chem. Mater., 2011, 23: 2803-2809
[71] Wu Z X, Zhao D Y. Chem. Commun., 2011, 3332-3338
[72] Zhao Y L, Gao Q, Tang T, Xu Y, Wu D. Mater. Lett., 2011, 65: 1045-1047
[73] 袁金芳(Yuan J F), 李健生(Li J S), 顾娟(Gu J), 王放(Wang F), 孙秀云(Sun X Y), 韩卫清(Han W Q), 王连军(Wang L J). 物理化学学报(Acta Physics Chimica Sinica), 2010, 26(6): 1711-1716
[74] Asensio J A, Sanchez E M, Gomez-Romero P. Chem. Soc. Rev., 2010, 39: 3210-3239
[75] Fernicola A, Panero A, Scrosati B. J. Power Sources, 2008, 178: 591-595
[76] Ye Y S, Liang G W, Chen B H, Shen W C, Tseng C Y, Cheng M Y, Rick J, Huang Y J. Chang F C, Hwang B J. J. Power Sources, 2011, 196: 5408-5415
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[15] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.