English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 463-470 前一篇   后一篇

• 综述与评论 •

仿生智能纳米通道在能量转换中的应用

张明辉, 翟锦   

  1. 北京航空航天大学 化学与环境学院 仿生智能界面科学与技术教育部重点实验室 北京 100191
  • 收稿日期:2011-08-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家重大科学研究计划项目(No.2011CB935704)资助

Biomimetic Smart Nanochannels for Energy Conversion

Zhang Minghui, Zhai Jin   

  1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2011-08-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
智能纳米通道由于独特的纳米结构,导致对离子的通过具有选择性、整流性和门控性,从而在能量转换领域具有重要的应用前景。本文根据能量转换原理的不同,将纳米通道在能量转换中的应用分为:模仿电鳗鱼将化学能转换为电能,模仿绿叶将光能转换为化学能,模仿菌紫质将光能转换为电能,模仿水力发电机将流体机械能转换为电能。其中,模仿电鳗鱼系统由于广泛的能量来源、高的能量转换效率以及输出的能量形式为电能,应用前景最为广阔。能量转换的性能受纳米通道自身的几何结构以及内表面电荷密度的影响。除此之外,还受外界条件的影响,比如电解质溶液类型和浓度,浓差和气压差的大小以及pH值等。
Biomimetic smart nanochannels show great potential in the field of energy conversion due to the special structure and responsive property. This article describes the recent progress in the biomimetic energy conversion systems and consists of four parts based on the different mechanisms of energy conversion: the chemoelectrical conversion system to mimic the electrical eel, the photochemical conversion system to mimic the green leaf, the photoelectrical system to mimic the bacteriorhodopsin, the electrochemomechanical conversion system to mimic the hydroelectric power. These biomimetic energy conversion systems can help people to better understand the energy conversion processes in nature. Furthermore, they can inspire the scientists to develop artificial energy devices with better performance. Among them the eel-inspired chemoelectrical conversion system shows the most promising future due to its high energy conversion efficiency and widespread energy input from mixing river water with sea water. The leaf-inspired photochemical conversion system is difficult to utilize with its energy output in the form of ATP. The bacteriorhodopsin-inspired photoelectrical system shows a bright future regardless of its relatively low energy conversion efficiency. The hydroelectric-inspired electrochemomechanical conversion system is in its infancy and needs further investigation. The performance of these systems is influenced by the geometric structure and the charge densities of the nanochannel, as well as the external environment such as the type and concentration of the solution, the concentration or pressure difference, pH and so on.
Contents
1 Introduction
2 The application of smart nanochannels in the field of energy conversion
2.1 The chemoelectrical conversion system to mimic the electrical eel
2.2 The photochemical conversion system to mimic the green leaf
2.3 The photoelectrical system to mimic the bac-teriorhodopsin
2.4 The electrochemomechanical conversion system to mimic the hydroelectric power
3 Conclusions and outlook

中图分类号: 

()
[1] Pennathur S, Eijkel J C T, van den Berg A. Lab Chip., 2007, 7(10): 1234-1237
[2] LaVan D A, Cha J N. Proc. Natl. Acad. Sci. USA, 2006, 103(14): 5251-5255
[3] 张朝峰(Zhang C F), 杜会枝(Du H Z), 杨频(Yang P). 化学进展(Progress in Chemistry), 2006, 18(9): 1194-1199
[4] Hou X, Jiang L. Acs Nano, 2009, 3(11): 3339-3342
[5] Wen L P, Hou X, Tian Y, Nie F Q, Song Y L, Zhai J, Jiang L. Adv. Mater., 2010, 22(9): 1021-1024
[6] Kocer A, Walko M, Meijberg W, Feringa B L. Science, 2005, 309(5735): 755-758
[7] Gyurcsanyi R E. Trac-Trend. Anal. Chem., 2008, 27(7): 627-639
[8] Xia F, Guo W, Mao Y D, Hou X, Xue J M, Xia H W, Wang L, Song Y L, Ji H, Qi O Y, Wang Y G, Jiang L. J. Am. Chem. Soc., 2008, 130(26): 8345-8350
[9] Guo W, Xia H W, Xia F, Hou X, Cao L X, Wang L, Xue J M, Zhang G Z, Song Y L, Zhu D B, Wang Y G, Jiang L. ChemPhysChem, 2010, 11(4): 859-864
[10] Wang G L, Bohaty A K, Zharov I, White H S. J. Am. Chem. Soc., 2006, 128(41): 13553-13558
[11] Siwy Z S, Howorka S. Chem. Soc. Rev., 2010, 39(3): 1115-1132
[12] Tian Y, Hou X, Wen L P, Guo W, Song Y L, Sun H Z, Wang Y G, Jiang L, Zhu D B. Chem. Commun., 2010, 1682-1684
[13] Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L P, Wang L, Cao L X, Yang Y, Xue J M, Song Y L, Wang Y G, Liu D S, Jiang L. J. Am. Chem. Soc., 2009, 131(22): 7800-7805
[14] Martin C R, Sexton L T, Horne L P, Sherrill S A, Bishop G W, Baker L A. J. Am. Chem. Soc., 2007, 129(43): 13144-13152
[15] Guo W, Xia H W, Cao L X, Xia F, Wang S T, Zhang G Z, Song Y L, Wang Y G, Jiang L, Zhu D B. Adv. Funct. Mater., 2010, 20(20): 3561-3567
[16] Siwy Z S, Vlassiouk I, Kozel T R. J. Am. Chem. Soc., 2009, 131(23): 8211-8220
[17] Gu L Q, Shim J W. Analyst, 2010, 135(3): 441-451
[18] Sugawara M, Hirano-Iwata A, Niwano M. Trac-Trend. Anal. Chem., 2008, 27(6): 512-520
[19] 何巧红(He Q H), 陈双(Chen S). 化学进展(Progress in Chemistry), 2008, 20(12): 2061-2067
[20] Goldberger J, Fan R, Yang P D. Accounts. Chem. Res., 2006, 39(4): 239-248
[21] Vlassiouk I, Apel P Y, Dmitriev S N, Healy K, Siwy Z S. Proc. Natl. Acad. Sci. USA, 2009, 106(50): 21039-21044
[22] Xu J, Lavan D A. Nat. Nanotechnol., 2008, 3(11): 666-670
[23] Gotter A L, Kaetzel M A, Dedman J R. Comp. Biochem. Phys. A, 1998, 119(1): 225-241
[24] Takeuchi S, Funakoshi K, Suzuki H. Anal. Chem., 2006, 78(24): 8169-8174
[25] Holden M A, Needham D, Bayley H. J. Am. Chem. Soc., 2007, 129(27): 8650-8655
[26] Xu J, Sigworth F J, LaVan D A. Adv. Mater., 2010, 22(1): 120-127
[27] Bayley H, Cronin B, Heron A, Holden M A, Hwang W L, Syeda R, Thompson J, Wallace M. Mol. Biosyst., 2008, 4(12): 1191-1208
[28] 李洪亮(Li H L), 赵君华(Zhao J H), 林青(Lin Q), 李克训(Li K X), 彭智(Peng Z), 赵修松(Zhao X S). 高等学校化学学报(Chemical Journal of Chinese Universities), 2010, 31(6): 1088-1092
[29] Li H L, Li K X, Zhang L, Fu A P, Zhu Y C, Wan Y, Zhao X S. Optoelectronic Materials, Pts 1and 2, 2010, 663/665: 721-724
[30] Guo W, Cao L X, Xia J C, Nie F Q, Ma W, Xue J M, Song Y L, Zhu D B, Wang Y G, Jiang L. Adv. Funct. Mater., 2010, 20(8): 1339-1344
[31] Vlassiouk I, Smirnov S, Siwy Z. Nano Lett., 2008, 8(7): 1978-1985
[32] Hamelers H V M, Post J W, Veerman J, Euverink G J W, Metz S J, Nymeijer K, Buisman C J N. J. Membrane. Sci., 2007, 288(1): 218-230
[33] Kruse O, Rupprecht J, Mussgnug J H, Dismukes G C, Hankamer B. Photoch. Photobio. Sci., 2005, 4(12): 957-970
[34] Moore T A, Moore A L, Gust D. Philos. T. Roy. Soc. B, 2002, 357(1426): 1481-1498
[35] Zhai J, Yang N L, Wang D, Chen Y S, Jiang L. ACS Nano, 2010, 4(2): 887-894
[36] Heng L P, Wang X Y, Yang N L, Zhai J, Wan M X, Jiang L. Adv. Funct. Mater., 2010, 20(2): 266-271
[37] 盛显良 (Sheng X L), 赵勇(Zhao Y), 翟锦(Zhai J), 朱道本(Zhu D B). 化学进展(Progress in Chemistry), 2007, 19(1): 59-65
[38] 赵勇(Zhao Y), 盛显良 (Sheng X L), 翟锦(Zhai J). 化学进展(Progress in Chemistry), 2006, 18(11): 1452-1459
[39] Hervas M, Navarro J A, De La Rosa M A. Acc. Chem. Res., 2003, 36(10): 798-805
[40] Gust D, Moore T A, Moore A L. Acc. Chem. Res., 2001, 34(1): 40-48
[41] Matile S, Bhosale S, Sisson A L, Talukdar P, Furstenberg A, Banerji N, Vauthey E, Bollot G, Mareda J, Roger C, Wurthner F, Sakai N. Science, 2006, 313(5783): 84-86
[42] Luo T J M, Soong R, Lan E, Dunn B, Montemagno C. Nat. Mater., 2005, 4(3): 220-224
[43] Dong H, Nie R X, Hou X, Wang P R, Yue J C, Jiang L. Chem. Commun., 2011, 3102-3104
[44] Choi H J, Montemagno C D. Nano Lett., 2005, 5(12): 2538-2542
[45] Subramaniam S, Henderson R. Nature, 2000, 406(6796): 653-657
[46] Kuhlbrandt W. Nature, 2000, 406(6796): 569-570
[47] Toyoshima C, Nakasako M, Nomura H, Ogawa H. Nature, 2000, 405(6787): 647-655
[48] Tian Y, Jiang L. Sci. China. Chem., 2011, 54(4): 603-610
[49] Chu L K, Yen C W, El-Sayed M A. Biosens. Bioelectron., 2010, 26(2): 620-626
[50] Wen L P, Hou X, Tian Y, Zhai J, Jiang L. Adv. Funct. Mater., 2010, 20(16): 2636-2642
[51] Yang J, Lu F Z, Kostiuk L W, Kwok D Y. J. Micromech. Microeng., 2003, 13(6): 963-970
[52] Daiguji H, Yang P D, Szeri A J, Majumdar A. Nano Lett., 2004, 4(12): 2315-2321
[53] Van der Heyden F H J, Stein D, Dekker C. Phys. Rev. Lett., 2005, 95(11): art. no. 116104
[54] Van der Heyden F H J, Bonthuis D J, Stein D, Meyer C, Dekker C. Nano Lett., 2006, 6(10): 2232-2237
[55] Xie Y B, Wang X W, Xue J M, Jin K, Chen L, Wang Y G. Appl. Phys. Lett., 2008, 93(16): 163116-163118
[56] Hou X, Guo W, Jiang L. Chem. Soc. Rev., 2011, 40(5): 2385-2401
[57] Jiang S P, Lu S F, Wang D L, Xiang Y, Lu J L, Zeng J. Adv. Mater., 2010, 22(9): 971-976
[58] Tian L, Zou H L, Fu J X, Yang X F, Wang Y, Guo H L, Fu X H, Liang C L, Wu M M, Shen P K, Gao Q M. Adv. Funct. Mater., 2010, 20(4): 617-623
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[3] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[4] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[5] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[6] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[7] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[8] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[9] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[10] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[11] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[12] 张瑞璞, 张润泽, 罗三中. 仿生邻醌催化[J]. 化学进展, 2020, 32(11): 1753-1765.
[13] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[14] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[15] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.