English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 445-455   后一篇

• 综述与评论 •

用于NH3选择性催化还原NOx的钒基催化剂

刘福东, 单文坡, 石晓燕, 贺泓   

  1. 中国科学院生态环境研究中心 北京 100085
  • 收稿日期:2011-08-01 修回日期:2011-11-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家自然科学基金项目(No.51108446)、国家高技术研究发展计划(863)项目(No.2009AA064802,2010AA065003);中国科学院优秀博士学位论文、院长奖获得者科研启动专项资金资助

Vanadium-Based Catalysts for the Selective Catalytic Reduction of NOx with NH3

Liu Fudong, Shan Wenpo, Shi Xiaoyan, He Hong   

  1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2011-08-01 Revised:2011-11-01 Online:2012-04-24 Published:2012-02-08
在富氧且有催化剂存在条件下以NH3或尿素为还原剂选择性地还原NOx为N2的技术,即NH3/Urea-SCR技术,是去除固定源和移动源NOx最为有效且应用最广的技术之一,其中最重要的催化剂体系是钒基催化剂。本文从钒基催化剂的组成及其NH3-SCR反应性能、钒基催化剂的活性改进以及钒基催化剂上的NH3-SCR反应机理三个方面对该领域的研究进展做了较为全面的综述,并对NH3-SCR领域可能的发展方向做了展望。传统的V2O5-WO3 (MoO3)/TiO2催化剂以及改性后的钒基催化剂在中温段具有优异的NOx净化效率和抗SO2中毒性能,其中高分散的V5+物种以及多聚的钒酸盐物种为NH3-SCR反应的活性中心。针对采用不同方法制备的或具有不同组成的钒基催化剂体系,多数学者认为NH3-SCR反应按照Eley-Rideal (E-R)机理进行,部分学者认为按照Langmuir-Hinshelwood (L-H)机理进行,这可能与催化剂的钒负载量以及反应温度区间相关。在后续工作中研究者应结合多种测试手段,具体问题具体分析,综合考虑温度的动态影响以及表面酸碱性对反应物的吸附活化,以得出更为全面、真实的反应机理。系统了解前人在钒基NH3-SCR催化剂领域的研究进展有助于现阶段开发高效稳定、可适应复杂工作条件的钒基SCR催化转化器,同时也对设计合成新型高效、环境友好且抗中毒的非钒基SCR催化剂体系具有一定的参考价值。
Selective catalytic reduction of NOx with NH3 or urea (NH3/Urea-SCR) as reducing agents over catalytic materials in oxygen-rich conditions is one of the most efficient and widely-used techniques for the removal of NOx from stationary and mobile sources. The most important catalyst system for NH3-SCR process is vanadium-based catalyst. In this review, the composition and NH3-SCR performance, the activity improvement of vanadium-based catalysts and the corresponding NH3-SCR reaction mechanisms are summarized. The possible developing orientations in the field of NH3-SCR technique are also prospected. The conventional V2O5-WO3 (MoO3)/TiO2 catalyst and corresponding improved vanadium-based catalysts usually show excellent deNOx efficiency and SO2 durability in the medium temperature range. On these catalysts, the highly dispersed V5+ species and poly-vanadate species are confirmed to be the active phases for NH3-SCR reaction. Over vanadium-based catalysts prepared by different methods or with different compositions, a majority of researchers consider that the NH3-SCR reaction follows an Eley-Rideal (E-R) mechanism and some researchers prefer to a Langmuir-Hinshelwood (L-H) mechanism, which might be related to the vanadium loading amount and reaction temperature. During the subsequent work in further study, the researchers should combine multiple characterization methods aiming at different catalyst systems, and pay more attention to the influence of temperature on the reaction mechanism together with the effect of surface acid/basic property on the adsorption and activation of NH3/NOx. Accordingly, much more comprehensive and authentic reaction mechanism can be concluded. The systematic understanding of the research progress in vanadium-based catalysts is beneficial to the development of highly efficient, stable vanadium-based SCR catalytic converters at the present stage, and also important for the design and synthesis of novel, efficient, environmentally-friendly vanadium-free SCR catalysts with high resistance to poisoning.
Contents
1 Introduction
2 Composition and NH3-SCR performance of vanadium-based catalysts
3 Improvement of vanadium-based catalysts
4 NH3-SCR reaction mechanism over vanadium-based catalysts
5 Comments and outlook

中图分类号: 

()
[1] Busca G, Lietti L, Ramis G, Berti F. Appl. Catal. B: Environ., 1998, 18: 1-36
[2] 贺泓(He H), 翁端(Weng D), 资新运(Zi X Y). 环境科学(Environmental Science), 2007, 28: 1169-1177
[3] Koebel M, Elsener M, Kleemann M. Catal. Today, 2000, 59: 335-345
[4] 管斌(Guan B), 周校平(Zhou X P), 林赫(Lin H), 王真(Wang Z), 黄震(Huang Z). 车用发动机(Vehicle Engine), 2007, 5: 1-8
[5] Hetrick C E, Lichtenberger J, Amiridis M D. Appl. Catal. B: Environ., 2008, 77: 255-263
[6] Zhao H, Bennici S, Cai J, Shen J, Auroux A. Catal. Today, 2010, 1/4: 70-77
[7] Baldychev I, Gort R J, Vohs J M. J. Catal., 2010, 269: 397-403
[8] Singh S, Jonnalagadda S B. Catal. Lett., 2008, 126: 200-206
[9] Zhao C, Wachs I E. J. Catal., 2008, 257: 181-189
[10] Giakoumelou I, Parvulescu V, Boghosian S. J. Catal., 2004, 225: 337-349
[11] Sun D, Liu Q, Liu Z, Gui G, Huang Z. Appl. Catal. B: Environ., 2009, 92: 462-467
[12] Bosch H, Janssen F. Catal. Today, 1988, 2: 369-379
[13] Matsuda S, Kato A. Appl. Catal., 1983, 8: 149-165
[14] Choo S T, Lee Y G, Nam I S, Ham S W, Lee J B. Appl. Catal. A: Gen., 2000, 200: 177-188
[15] Pavulescu V I, Grange P, Delmon B. Catal. Today, 1998, 46: 233-316
[16] Roy S, Hegde M S, Madras G. Appl. Energ., 2009, 86: 2283-2297
[17] Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. J. Catal., 1999, 187: 419-435
[18] Amiridis M D, Duevel R V, Wachs I E. Appl. Catal. B: Environ., 1999, 20: 111-122
[19] Djerad S, Tifouti L, Crocoll M, Weisweiler W. J. Mol. Catal. A: Chem., 2004, 208: 257-265
[20] Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A. Appl. Catal. B: Environ., 1999, 22: 63-77
[21] Kröcher O, Elsener M. Appl. Catal. B: Environ., 2008, 77: 215-227
[22] Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P. Appl. Catal. B: Environ., 2010, 95: 39-47
[23] Birkhold F, Meingast U, Wassermann P, Deutschmann O. Appl. Catal. B: Environ., 2007, 70: 119-127
[24] Piazzesi G, Kröcher O, Elsener M, Wokaun A. Appl. Catal. B: Environ., 2006, 65: 55-61
[25] Long R Q, Yang R T. Appl. Catal. B: Environ., 2000, 24: 13-21
[26] Chae H J, Nam I S, Ham S W, Hong S B. Appl. Catal. B: Environ., 2004, 53: 117-126
[27] Kobayashi M, Kuma R, Masaki S, Sugishima N. Appl. Catal. B: Environ., 2005, 60: 173-179
[28] Parvulescu V I, Boghosian S, Parvulescu V, Jung S M, Grange P. J. Catal., 2003, 217: 172-185
[29] Kobayashi M, Kuma R, Morita A. Catal. Lett., 2006, 112: 37-44
[30] Huang Y, Tong Z Q, Wu B, Zhang J F. J. Fuel Chem. Technol., 2008, 36: 616-620
[31] Chen L, Li J, Ge M. J. Phys. Chem. C, 2009, 113: 21177-21184
[32] Li Y, Zhong Q. J. Hazard. Mater., 2009, 172: 635-640
[33] Huang Z, Zhu Z, Liu Z. Appl. Catal. B: Environ., 2002, 39: 361-368
[34] Zhang X, Huang Z, Liu Z. Catal. Commun., 2008, 9: 842-846
[35] Huang Z, Zhu Z, Liu Z, Liu Q. J. Catal., 2003, 214: 213-219
[36] Huang Z, Liu Z, Zhang X, Liu Q. Appl. Catal. B: Environ., 2006, 63: 260-265
[37] Zhu Z, Liu Z, Niu H, Liu S. Sci. China Ser. B, 2000, 43: 51-57
[38] 朱珍平(Zhu Z P). 中国科学院山西煤炭化学研究所博士论文(Doctoral Dissertation of the Institute of Coal Chemistry, Chinese Academy of Sciences), 2001
[39] Hou Y, Huang Z, Guo S. Catal. Commun., 2009, 10: 1538-1541
[40] Huang B, Huang R, Jin D, Ye D. Catal. Today, 2007, 126: 279-283
[41] Madia G, Koebel M, Elsener M, Wokaun A. Ind. Eng. Chem. Res., 2002, 41: 3512-3517
[42] Kim C H, Qi G, Dahlberg K, Li W. Science, 2010, 327: 1624-1627
[43] Wen Y, Zhang C, He H, Yu Y, Teraoka Y. Catal. Today, 2007, 126: 400-405
[44] Forzatti P, Nova I, Tronconi E. Angew. Chem. Int. Ed., 2009, 121: 8516-8518
[45] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. Catal. Today, 2006, 114: 3-12
[46] Inomata M, Miyamoto A, Murakami Y. J. Catal., 1980, 62: 140-148
[47] Ozkan U S, Cai Y P, Kumthekar M W. J. Catal., 1994, 149: 390-403
[48] Ozkan U S, Cai Y P, Kumthekar M W, Zhang L P. J. Catal., 1993, 142: 182-197
[49] Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. J. Catal., 1995, 157: 523-535
[50] Busca G, Larrubia M A, Arrighi L, Ramis G. Catal. Today, 2005, 107/108: 139-148
[51] Ramis G, Busca G, Bregani F, Forzatti P. Appl. Catal., 1990, 64: 259-278
[52] Yin X, Han H, Miyamoto A. Phys. Chem. Chem. Phys., 2000, 2: 4243-4248
[53] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. J. Phys. Chem., 1976, 80: 430-431
[54] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. J. Catal., 1977, 50: 441-446
[55] Went G T, Leu L J, Rosin R R, Bell A T. J. Catal., 1992, 134: 492-505
[56] Odriozola J A, Heinemann H, Somorjai G A, de la Banda J F G, Pereira P. J. Catal., 1989, 119: 71-82
[57] Topsøe N Y. Science, 1994, 265: 1217-1219
[58] Topsøe N Y, Dumesic J A, Topsøe H. J. Catal., 1995, 151: 241-252
[59] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 张长斌(Zhang C B), 贺泓(He H). 催化学报(Chinese Journal of Catalysis), 2011, 32: 1113-1128
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[9] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[10] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[11] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[12] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[13] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
[14] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[15] 王亚军, 李泽雪, 于海洋, 冯长根. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.