English
新闻公告
More
化学进展 前一篇   

• 综述与评论 •

固体杂多酸在生物质水解转化中的应用

张建明, 翟尚儒*, 黄德智, 翟滨, 安庆大*   

  1. 大连工业大学轻工与化学工程学院 大连 116034
  • 收稿日期:2011-07-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 翟尚儒, 安庆大 E-mail:zhaisr@dlpu.edu.cn; anqingda@dlpu.edu.cn
  • 基金资助:

    辽宁省自然科学基金项目(No.2010401)、辽宁省高校优秀人才支持计划(201005)和大连市科学技术基金项目(No.2010J21DW021)资助

Solid Heteropolyacids (HPAs) in Hydrolytic Conversion of Biomass

Zhang Jianming, Zhai Shangru*, Huang Dezhi, Zhai Bin, An Qingda*   

  1. Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received:2011-07-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
随着化石资源的日益枯竭,寻求可替代清洁能源已成为全球重大课题。生物质是一种可再生的清洁能源,目前人们尝试通过利用生物质转化缓解日益增长的能源需求。杂多酸是应用在清洁工艺中的重要催化剂,结构和酸度的设计调变性及较高的热稳定性,使其广泛用于生物质的水解转化反应平台。目前固体杂多酸在水溶剂、有机溶剂及两相体系中降解生物质有着各自不同的优缺点。本文综述了杂多酸在不同反应体系中水解转化生物质制备精细化学品的研究进展,并对其在生物质水解转化利用中的应用前景进行了展望。
With global oil production flattening out, attention is being increasingly paid to a kind of renewable clean energy-biomass. Heteropolyacids are important catalysts in the so-called clean technologies. They possess strong acidity, structural flexibility and fairly high thermal stability. It would be preferable to carry out the heteropolyacids-catalyzed reaction in biomass hydrolytic conversion. The performance of heteropolyacids towards hydrolysis of biomass in pure water, organic solvents and biphasic systems exhibit different advantages and limitations. In this paper, we reviewed the latest progress in the hydrolytic conversion of biomass into valuable chemicals using heteropolyacids in different catalytic systems. Highly effective utilization of biomass has positive effects on solving energy problems and achieving sustainable development of energy and chemical industry.Heteropolyacids used as excellent green catalyst will possess extensive application prospect in biomass conversion. Contents
1 Introduction
2 Characteristics and Utilization of Biomass
3 Structure features and current situation of HPAs
3.1 Pure HPAs
3.2 Salts of HPAs
3.3 Supported HPAs
4 Applications of HPAs in hydrolytic conversion of biomass
4.1 Water solvent
4.2 Organic solvents
4.3 Biphasic system
5 Conclusion and outlook

中图分类号: 

()
[1] 岑沛霖(Cen P L), 穆江华(Mu J H), 赵春晖(Zhao C H), 林建平(Lin J P). 生物加工过程(Chinese Journal of Bioprocess Engineering), 2003, 1(1): 17-22
[2] Wolfgang Palz. 能源工程(Energy Engineering), 1997, (1): 35-38
[3] Bridgwater A V. Renewable Chemical Engineering Journal, 2003, 91(2/3): 87-102
[4] 魏学锋(Wei X F), 罗婕(Luo J), 田学达(Tian X D). 冶金能源(Energy for Metallurgical Industry), 2004, 23(6): 45-49
[5] Vuthaluru H B. Fuel Processing Technology, 2004, 85(2/3): 141-155
[6] 王智微(Wang Z W), 李定凯(Li D K), 唐松涛(Tang S T), 沈幼庭(Shen Y T). 能源研究与信息(Energy Research and Information), 2002, 18(1): 21-29
[7] Yang P F, Kobayashi H, Fukuoka A. 催化学报(Chinese Journal of Catalysis), 2011, 32(5): 716-722
[8] 马隆龙(Ma L L), 吴创之(Wu C Z), 孙立(Sun L). 生物质气化技术及其应用(Biomass Gasification Technology and Its Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003
[9] Huber G W, Iborra S, Corma A. Chem. Rev., 2007, 107: 2411
[10] Chheda J N, Huber G W, Dumesic J A. Angew. Chem. Int. Ed., 2007, 46: 7164-7183
[11] Christensen C H, Rass-Hansen J, Marsden C C, Taarning E, Egeblad K. ChemSusChem, 2008, 1: 283-289
[12] Zhao H, Kwak J H, Wang Y, Franz J A, White J M, Holladay J E. Energy Fuels, 2006, 20: 807-811
[13] Zhao H, Holladay J E, Wang Y, White J M, Zhang Z C. J. Biobased Mater. Bioenergy, 2007, 1: 210-214
[14] Fan L T, Gharpuray M M, Lee Y H. Cellulose Hydrolysis. Berlin: Springer, 1987
[15] Zhang Y P, Lynd L R. Biotechnol. Bioeng., 2004, 88: 797-824
[16] Gan Q, Allen S J, Taylor G. Process Biochem., 2003, 38: 1003-1018
[17] Ishikawa Y, Saka S. Cellulose, 2001, 8: 189-195
[18] Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Ind. Eng. Chem. Res., 2000, 39: 2883-2890
[19] Matsumura Y, Minowa T, Potic B, Kersten S. Biomass Bioenergy, 2005, 29: 269-292
[20] Yu Y, Lou X, Wu H. Energy Fuels, 2008, 22: 46-60
[21] Zhao Y, Lu W J, Wang H T. Chem. Eng., 2009, 150: 411-417
[22] Deguchi S, Tsujii K, Horikoshi K. Green Chem., 2008, 10: 623-626
[23] Fukaya Y, Hayashi K, Wada M, Ohno H. Green Chem., 2008, 10: 44-46
[24] Li C Z, Zhao Z B K. Adv. Synth. Catal., 2007, 349(11/12): 1847-1850
[25] Vitz J, Erdmenger T, Haensch C, Schubert U S. Green Chem., 2009, 11: 417-424
[26] Mandan C, Alexis T B. Green Chem., 2010, 12: 1253-1262
[27] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[28] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[29] Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Dinga Y, Wu G. Green Chem., 2006, 8: 325-327
[30] El Seoud O A, Koschella A, Fidale L C, Dorn S, Heinze T. Biomacromolecules, 2007, 8: 2629-2647
[31] Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S. J. Agric. Food Chem., 2007, 55: 9142-9148
[32] Liu Q, Janssen M H A, van Rantwijk F, Sheldon R A. Green Chem., 2005, 7: 39-42
[33] Zavrel M, Bross D, Funke M, Buchs J, Spiess A C. Bioresour. Technol., 2009, 100: 2580-2587
[34] Pinkert A, Marsh K N, Pang S, Staiger M P. Chem. Rev., 2009, 109: 6712-6728
[35] Okuhara T. Mol. Catal., 1992, 74: 247-251
[36] 吴越(Wu Y), 叶兴凯(Ye X K), 谢文华(Xie W H), 杨向光(Yang X G). CN1125640, 1996
[37] He Y G. Chinese Journal of Catalysis, 1999, 20(4): 20-25
[38] Blaso T, Corma A, Martinez-Escolano A. J.Catal., 1998, 177: 306-313
[39] López-Salinas E, Hernándéz-Cortéz J G, Cortzes-Jácome M A, Navarrete J, Llanos M E, Vázquez A, Armendáriz H, López T. Appl. Catal.A Gen., 1998, 175: 43-53
[40] 潘海水(Pan H S), 周勤伟 (Zhou Q W), 陈安均 (Chen A J), 刘定江(Liu D J), 邓景发(Deng J F). 应用化学(Applied Chemistry), 1989, 6(2): 11-14
[41] 侯文华(Hou W H), 颜其洁(Yan Q J). 分子催化(Journal of Molecular Catalysis), 1990, 4(1): 13-19
[42] Knifton J F, Edwards J C. Appl. Catal.A Gen., 1999, 183: 1-13
[43] Shikata S, Nakata S, Okuhara T, Misono M. J. Catal.,1997, 166: 263-271
[44] 胡玉才(Hu Y C), 叶兴凯(Ye X K), 吴越 (Wu Y). 石油学报(石油加工)(Acta Petrolei Sinca (Petroleum Processing Section)), 1996, 12(2): 51-58
[45] 楚文玲 (Cu W L), 杨向光(Yang X G), 叶兴凯(Ye X K), 等. 石油化工(Petroleum Technology), 1996, 25: 462-465
[46] Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Chem. Commun., 2010, 46: 2668-2670
[47] Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Catal. Today, 2011, 164(1): 461-466
[48] Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A. Green Chem., 2009, 11: 1627-1632
[49] Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B. Chem. Commun., 2010, 46: 3577-3579
[50] Palkovits R, Tajvidi K, Ruppert A M, Procelewska J. Chem. Commun., 2011, 47: 576-578
[51] Zhao S, Cheng M X, Li J, Tian J, Wang X H. Chem. Commun., 2011, 47: 2176-2178
[52] Zhao Q, Wang L, Zhao S, Wang X H, Wang S T. Fuel, 2011, 90(6): 2289-2293
[53] Shimizu K, Uozumi R, Satsuma A. Proceedings of International Symposium on EcoTopia Science 2007, ISETS07(2007)
[54] Tian J, Wang J H, Zhao S, Jiang C Y, Zhang X, Wang X H. Cellulose, 2010, 17: 587-594
[55] Shatalov A A, Evtuguin D V, Neto C P. Carbohydrate Polymers, 2000, 43: 23-32
[56] Dias A S, Pillinger M, Valente A A. Applied Catalysis A: General, 2005, 285: 126-131
[57] Dias A S, Lima S, Pillinger M, Valente A A. Carbohydrate Research, 2006, 341: 2946-2953
[58] Dias A S, Pillinger M, Valente A A. Microporous and Mesoporous Materials, 2006, 94: 214-225
[59] Shimizu K, Uozumi R, Satsuma A. Catal. Commun., 2009, 10: 1849-1853
[60] Fan C Y, Guan H Y, Zhang H, Wang J H, Wang S T, Wang X H. Biomass and Bioenergy, 2011, 35(7): 2659-2665
[61] Flora C, Franck R, Catherine P, Amandine C, Emmanuelle G, Nadine E. Applied Catalysis B: Environmental, 2011, 105: 171-181
[62] Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N. ChemSusChem, 2011, 4: 519-525
[63] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc., 2008, 130: 12787-12793
[64] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M. J. Phys. Chem., 2009, C113: 3181-3188
[65] Onda A, Ochi T, Yanagisawa K. Green Chem., 2008, 10: 1033-1037
[66] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47: 8047-8050
[67] Roman-Leshkov Y, Chheda J N, Dumesic J A. Science, 2006, 312:1933-1937
[68] Qi X H, Watanabe M, Aida T M, Smith R L Jr. Green Chem., 2008, 10: 799-805
[69] Nakamura Y, Morikawa S. Bull. Chem. Soc. Jpn., 1980, 53: 3705-3706
[70] Vinke P, van Bekkum H. Starch/Stäke, 1992, 44: 90-96
[71] Mercadier D, Rigal L, Gaset A, Gorrichon J P. J. Chem. Technol. Biotechnol., 1981, 31: 489-496
[72] Lansalot-Matras C, Moreau C. Catal. Commun., 2003, 4: 517-520
[73] Takagaki A, Tagusagawa C, Domen K. Chem. Commun., 2008, 5363-5365
[74] Carlini C, Patrono P, Galletti A M R, Sbrana G. Appl. Catal. A: Gen., 2004, 275: 111-118
[75] Armaroli T, Busca G, Carlini C, Giuttari M, Galletti A M R, Sbrana G. J. Mole. Catal A: Chem., 2000, 151: 233-243
[76] Asghari F S, Yoshida H. Carbohydr. Res., 2006, 341: 2379-2387
[77] Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P. Appl. Catal. A: Gen., 1996, 145: 211-224
[78] Rivalier P, Duhamet J, Moreau C, Durand R. Catal. Today, 1995, 24: 165-171
[79] Okuhara T, Mizuno N, Misono M. Advances in Catalysis. London: Academic Press, 1996, 41: 113-252
[80] 温朗友(Wen L Y), 闵恩泽(Min E Z). 石油化工(Petrochemical Technology), 2000, 29(1): 49-54
[81] Okuhara T. Catal. Today, 2002, 73(1): 167-176
[82] Misono M, Ono I, Koyano G. Pure Appl. Chem., 2000, 72(7): 1305-1311
[83] 闫永胜(Yan Y S), 霍鹏伟(Huo P W), 刘箭(Liu J), 李松田(Li S T), 王良(Wang L). 吉林师范大学学报(自然科学版)(Journal of Jilin Normal University(Natural Science Edition)), 2007, 28(3): 24-27
[84] 王泳(Wang Y), 徐爱民(Xu A M), 许锡恩(Wu X E). 齐鲁石油化工(QILU Petrochemical Technology), 1999, 27 (2): 131-134
[85] 吴越(Wu Y), 叶兴凯(Ye X K), 杨向光(Yang X G), 王新平(Wang X P), 楚文玲(Chu W L), 胡玉才(Hu Y C). 分子催化(Journal of Molecular Catalysis), 1996, 10(4): 299-319
[86] 牟莉(Mou L),樊孟琦(Fan M Q),王涛(Wang T).长春大学学报(Journal of Changchun University), 2008, 18(6): 42-44
[87] Kozhevnikov I V. Russian Chem. Rev., 1987, 56: 811-825
[88] 谢文华(Xie W H), 张伟(Zhang W), 叶兴凯(Ye X K), 杨向光(Yang X G), 吴越(Wu Y). 分析化学(Chinese Journal of Analytical Chemistry), 1996, 24(9): 1069-1073
[89] Kozhevnikov I V. Chem. Rev., 1998, 98: 171-198
[90] Okuhara T. Chem. Rev., 2002, 102: 3641-3665
[91] Corma A, Martínez A, Martínez C. J. Catal., 1996, 164: 422-432
[92] Knifton J F. US 4827048,1989
[93] Knifton J F. US 5300703,1994
[94] Bara T, Ono Y. Appl. Catal., 1986, 22: 321-324
[95] Kozhevnikov I V, Sinnema A, Jansen R. Catal. Lett., 1995, 30: 241-252
[96] Kresge C T, Marler D O, Rav G S. US 5324881, 1994
[97] Kresge C T, Marler D O, Rav G S. US 5366945, 1994
[98] Zhu P, Wang D H. Science in China Ser. B Chem., 2007, 50(2): 249-252
[99] Kwon T, Pinnavvaia T J. J. Mol. Catal., 1992, 74: 23-33
[100] Chheda J N, Román-Leshkov Y, Dumesic J A. Green Chem., 2007, 9: 342-350
[101] Li C, Wang Q, Zhao Z K. Green Chem., 2008, 10:177-182
[102] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H. J. Phys. Chem. C, 2009, 113: 3181-3188
[103] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47: 8047-8050
[104] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S. J. Am. Chem. Soc., 2008, 130: 12787-12793
[105] Jollet V, Chambon F, Rataboul F, Cabiac A, Pinel C, Guillon E, Essayem N. Green Chem., 2009, 2052-2060
[106] Rapp K M. US4740605, 1987
[107] Mercadier D, Rigal L, Gaset A, Gorrichon J P. J. Chem. Technol. Biotechnol., 1981, 31: 489-496
[108] 蒋安仁(Tsiang A R), 蔡光缵(Tsai K T), 顾翼东(Ku Y T). 复旦大学学报(J. Fudan Univ. (Natural Science)), 1963, (4): 451-457
[109] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[110] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[111] Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Dinga Y, Wu G. Green Chem., 2006, 8: 325-327
[112] Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. J. Agric. Food Chem., 2007, 55: 9142-9148
[113] Pinkert A, Marsh K N, Pang S, Staiger M P. Chem. Rev., 2009, 109: 6712-6728
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[3] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[4] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[5] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[6] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[9] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[12] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[13] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[14] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[15] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.