English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

铁配合物的环境光化学及其参与的环境化学过程

王兆慧1,2*, 宋文静2, 马万红2, 赵进才2   

  1. 1. 东华大学环境科学与工程学院 上海 201620;
    2. 中国科学院化学研究所北京分子科学国家实验室 北京 100190
  • 收稿日期:2011-07-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 王兆慧 E-mail:zhaohuiwang@dhu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB933503)、国家自然科学基金项目(No.21007009, 20920102034, 20907056)、上海市“晨光”计划项目(10CG34)和高等学校博士学科点专项科研基金项目(20100075120010)资助

Environmental Photochemistry of Iron Complexes and Their Involvement in Environmental Chemical Processes

Wang Zhaohui1,2*, Song Wenjing2, Ma Wanhong2, Zhao Jincai2   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
    2. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
  • Received:2011-07-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
铁是地壳中含量最为丰富的金属元素之一,而自然界中存在的绝大多数溶解性铁都是以有机络合形式存在的。环境中的铁配合物在光照下会发生直接光解和次级的(光)化学反应过程,生成还原性的Fe(Ⅱ)和有机自由基以及衍生的活性氧物种。铁配合物的环境光化学反应将深刻影响着氧自由基的生成与衰减、有机物降解和其他元素的环境化学循环过程,因此,成为近年来国际环境科学领域的研究热点。本文介绍了铁配合物光还原反应的类型和原理,分析了Fe(Ⅱ)(光)化学氧化的可能机理和影响因素,并对国内外关于铁参与的环境化学过程所开展的研究进行了评述。在此基础上,通过分析目前研究中所存在的问题,对今后的研究方向和趋势作了展望。
Iron is one of the most abundant metals in the continental crust, while most of dissolved iron is complexed with organic ligands. The irradiated iron complexes in the environment undergo direct photolysis and secondary (photo)chemical reactions, generating Fe(Ⅱ), organic radicals and some reactive oxygen species (ROS). Environmental photochemistry of iron complexes can greatly affect ROS dynamics, organics degradation and redox cycling of other elements. Therefore, it is becoming a hot topic in the international field of environmental sciences research. This review firstly summarizes three types of iron complexes including inorganic Fe complexes, simple organic Fe complexes and macrocyclic organic Fe complexes, and photoreduction mechanisms of iron complexes. Secondly, the potential oxidants of Fe(Ⅱ) in acidic aquatic environment are introduced. The oxidation kinetics, possible reaction mechanism and influencing factors (such as dissolved oxygen concentration, pH, ionic strength, temperature and natural organic matters concentrations) of (photo)chemical oxidation of Fe(Ⅱ) are elucidated. This review also highlights recent findings in the study of environmental processes involving iron photochemistry. Finally, the future prospects in this field are discussed based on the current status. Contents
1 Introduction
2 Princile of environmental photochemistry of iron complexes
2.1 Photoreduction of Fe(Ⅲ)
2.2 (Photo)chemical oxidation of Fe(Ⅱ)
3 Some environmental chemical processes involved in Fe complexes
3.1 Production and decay of reactive oxygen species (ROS)
3.2 Degradation of organic compounds
3.3 Coupling with other metals' redox cycling
4 Conclusions and outlook

中图分类号: 

()
[1] Manahan S E. Environmental Chemistry. Chelsea, 4th ed. MI : Lewis Publishers, 1990
[2] 赫茨英格(Hutzinger O). 环境化学手册. 第一分册, 自然环境和生物地球化学循环(Handbook of Environmental Chemistry. The First Volume, the natural environment and the Biogeochemical Cycles). 北京: 中国环境科学出版社(Beijing: China Environmental Science Press), 1987
[3] Zika R G, Copper W J. Photochemistry of Environmental Aquatic Systems. Washington, DC: American Chemical Society, 1987
[4] 邓南圣(Deng N S), 吴峰(Wu F). 环境光化学(Environmental Photochemistry). 北京: 化学工业出版社 (Beijing: Chemical Industry Publisher), 2003
[5] Helz G R, Zepp R G, Crosby D G. Aquatic and Surface Photochemistry. Boca Raton: Lewis Publishers, 1994. 3-37
[6] Helz G R, Zepp R G, Crosby D G. Aquatic and Surface Photochemistry. Boca Raton: Lewis Publishers, 1994. 53-73
[7] Perret D, Gaillard J, Dominik J, Atteia O. Environ. Sci. Technol., 2000, 34: 3540-3546
[8] Barbeau K. Photochem. Photobiol., 2006, 82: 1505-1516
[9] Song W J, Ma W H, Ma J H, Chen C C, Zhao J C, Xu Y M, Huang Y P. Environ. Sci. Technol., 2005, 39: 3121-3127
[10] Zuo Y G, Holgné J. Environ. Sci. Technol., 1992, 26: 1014-1022
[11] Zuo Y G, Holgné J. Science, 1993, 260: 71-73
[12] Faust B C, Anastasio C, Allen J M, Arakaki T. Science, 1993, 260: 73-75
[13] Wilson C L, Hinman N W, Cooper W J, Brown C F. Environ. Sci. Technol., 2000, 34: 2655-2662
[14] Southworth B A, Voelker B M. Environ. Sci. Technol., 2003, 37: 1130-1136
[15] Paciolla M D, Davies G, Jansen S. Environ. Sci. Technol., 1999, 33: 1814-1818
[16] Jeong J, Yoon J. Water Res., 2005, 39: 2893-2900
[17] Kotronarout A, Sigg L. Environ. Sci. Technol., 1993, 27: 2725-2735
[18] Brandt C, Fábián I, van Eldik R. Inorg. Chem., 1994, 33: 687-701
[19] Thoral S, Rose J, Garnier J M, Vangeen A, Refait P, Traverse A, Bottero J Y. Environ. Sci. Technol., 2005, 39: 9478-9485
[20] Hug S J, Leupin O. Environ. Sci. Technol., 2003, 37: 2734-2742
[21] Hug S J, Canonica L, Wegelin M, Gechter D, Von Gunten U. Environ. Sci. Technol., 2001, 35: 2114-2121
[22] Voegelin A, Hug S J. Environ. Sci. Technol., 2003, 37: 972-978
[23] Gaberell M, Chin Y P, Hug S J, Sulzberger B. Environ. Sci. Technol., 2003, 37: 4403-4409
[24] Zhang H, Bartlett R J. Environ. Sci. Technol., 1999, 33: 588-594
[25] Wielinga B, Mizuba M M, Hansel C, Fendorf S. Environ. Sci. Technol., 2001, 35: 522-527
[26] Buerge I J, Hug S J. Environ. Sci. Technol., 1999, 33: 4285-4291
[27] Voelker B M, Morel F M M, Sulzberger B. Environ. Sci. Technol., 1997, 31: 1004-1011
[28] Gao H Z, Zepp R G. Environ. Sci. Technol., 1998, 32: 2940-2946
[29] Kwan W P, Voelker B M. Environ. Sci. Technol., 2003, 37: 1150-1158
[30] Kwan W P, Voelker B M. Environ. Sci. Technol., 2002, 36: 1467-1476
[31] Zuo Y G, Holgné J. Atmos. Environ., 1994, 28: 1231-1239
[32] Lee W J, Batchelor B. Environ. Sci. Technol., 2002, 36: 5147-5154
[33] Lee W J, Batchelor B. Environ. Sci. Technol., 2002, 36: 5348-5354
[34] Maithreepala R A, Doong R A. Environ. Sci. Technol., 2005, 39: 4082-4090
[35] Naka D, Kim D, Strathmann T. J. Environ. Sci. Technol., 2006, 40: 3006-3012
[36] Hofstetter T B, Neumann A, Schwarzenbach R P. Environ. Sci. Technol., 2006, 40: 235-242
[37] Royer R, Burgos W, Fisher A, Unz R, Dempsey B. Environ. Sci. Technol., 2002, 36: 1939-1946
[38] Hacherl E, Kosson D, Young L, Cowan R M. Environ. Sci. Technol., 2001, 35: 4886-4893
[39] Barbeau K, Rue E L, Bruland K W, Butler A. Nature, 2001, 413: 409-413
[40] Kostka J E, Haefele E, Viehweger R, Stucki J W. Environ. Sci. Technol., 1999, 33: 3127-3133
[41] Li Y L, Vali H, Sears S K, Yang J, Deng B L, Zhang C L. Geochimicaet Cosmochimica Acta, 2004, 68: 3251-3260
[42] Deguillaume L, Leriche M, Desboeufs K, Mailhot G, George C, Chaumerliac N. Chem. Rev., 2005, 105: 3388-3431
[43] Faust B C, Hoigné J. Atmos. Environ., 1990, 24A: 79-89
[44] Balzani V, Carassiti V. Photochemistry of Coordination Compounds. New York: Academic Press, 1970
[45] Sima J, Makanova J. Coord. Chem. Rev., 1997, 160: 161-189
[46] David F, David P G. J. Phys. Chem., 1976, 80: 579-583
[47] Nadtochenko V A, Kiwi J. Inorg. Chem., 1998, 37: 5233-5238
[48] Benkelberg H, Warneck P. J. Phys. Chem., 1995, 99: 5214-5221
[49] Zuo Y G, Deng Y W. Chemosphere, 1997, 35: 2051-2058
[50] Zuo Y G. Doctoral Dissertation of Swiss Federal Institute of Technology, 1992
[51] Faust B C, Zepp R G. Environ. Sci. Technol., 1993, 27: 2517-2522
[52] Parker C A, Hatchard C G. J. Phys. Chem., 1959, 63: 22-26
[53] Patterson J I H, Perone S P. J. Phys. Chem., 1973, 77: 2437-2440
[54] Chen J, Zhang H, Tomov I V, Rentzepis P M. Inorg. Chem. Acta, 2008, 47: 2024-2032
[55] Pozdnyakov I P, Kel O V, Plyusnin V F, Grivin V P, Bazhin N M. J. Phys. Chem., 2008, 112: 8316-8322
[56] Hatchard C G, Parker C A. Proc. Royal Soc. London, Ser. A, 1956, 235: 518-536
[57] Hutzinger O. Handbook of Environmental Chemistry, Volume 2: Part M: Environmental Photochemistry Part Ⅱ: Reactions and Processes. Berlin: Springer-Verlag, 2005. 255-298
[58] Vincze L, Papp S. J. Photochem., 1987, 36: 289-296
[59] Abrahamson H B, Rezvani A B, Brushmiller J G. Inorg. Chim. Acta, 1994, 226: 117-127
[60] Kuma K, Nakabayashi S, Matsunaga K. Water Res., 1995, 29: 1559-1569
[61] Boule P. The Handbook of Environmental Chemistry. Berlin: Springer-Verlag, 1999. 181
[62] Alder A C, Siegrist H, Gujer W, Giger W. Water Res., 1990, 24: 733-742
[63] Kari F G, Hilger S, Canonica S. Environ. Sci. Technol., 1995, 29: 1008-1017
[64] Carey J H, Langford C H. Can. J. Chem., 1973, 51: 3665-3670
[65] Natarajan P, Endicott J F. J. Phys. Chem., 1973, 77: 2049-2054
[66] Carey J H, Langford C H. Can. J. Chem., 1975, 53: 2436-2440
[67] Mailhot G, Bordes A L, Bolte M. Chemosphere, 1995, 30: 1729-1737
[68] Finden D A S, Tipping E, Jaworski G H M, Reynolds C S. Nature, 1984, 309: 783-784
[69] Gao H, Zepp R G. Environ. Sci. Technol., 1988, 32: 2940-2946
[70] Sigel A, Sigel H. Plants and Animals. New York: Marcel Dekker, 1998, 239-328
[71] Barbeau K, Zhang G P, Live D H, Butler A. J. Am. Chem. Soc., 2002, 124: 378-379
[72] Barbeau K, Rue E L, Trick C G, Bruland K T, Butler A. Limnol. Oceanogr., 2003, 48: 1069-1078
[73] Logan S R. J. Chem. Soc. Faraday Trans., 1990, 86: 615-617
[74] Braterman P S, Cairns-Smith A G, Sloper R W. Nature, 1983, 303: 163-164
[75] Behra P, Sigg L. Nature, 1990, 344: 419-421
[76] King D W. Environ. Sci. Technol., 1998, 32: 2997-3003
[77] Feig A L, Lippard S J. Chem. Rev., 1994, 94: 759-805
[78] Seibig S, Eldik V R. Inorg. Chem., 1997, 36: 4115-4120
[79] King D W, Loumsbiru H A, Millero F. J. Environ. Sci. Technol., 1995, 29: 818-824
[80] Emmenegger L, King D W, Sigg L, Sulzberger B. Environ. Sci. Technol., 1998, 32: 2990-2996
[81] Theis T L, Singer P C. Environ. Sci. Technol., 1974, 8: 569-573
[82] Singer P C, Stumm W. Science, 1970, 167: 1121-1123
[83] Kallies B, Meier R. Inorg. Chem., 2001, 40: 3101-3112
[84] Flynn C M. Chem. Rev., 1984, 84: 31-41
[85] Millero F J, Sotolongo S, Izaguirre M. Geochim. Cosmochim. Acta, 1987, 51: 793-801
[86] Millero F J. Mar. Chem., 1988, 28: 1-18
[87] Millero F J, Izaguirre M. J. Solut. Chem.,1989, 18: 585-599
[88] Millero F J, Sotolongo S. Geochim. Cosmochim. Acta, 1989, 53: 1867-1873
[89] Tamura H, Goto K, Nagayama M. Corros. Sci., 1976, 16: 197-207
[90] Croot P L, Laan P. Anal. Chim. Acta, 2002, 466: 261-273
[91] Sulzberger B, Schnoor J L, Giovanoli R, Hering J G, Zobrist J. Aquat. Sci., 1990, 52: 56-74
[92] Barry R C, Schnoor J L, Sulzberger B, Sigg L, Stumm W. Water Res.,1994, 28: 323-333
[93] Rose A, Waite T D. Environ. Sci. Technol., 2002, 36: 433-444
[94] Pullin M J, Cabaniss S E. Geochim. Cosmochim. Acta, 2003, 67: 4067-4077
[95] Pullin M J, Cabaniss S E. Geochim. Cosmochim. Acta, 2003, 67: 4079-4089
[96] Voelker B M, Sulzberger B. Environ. Sci. Technol., 1996, 30: 1106-1114
[97] Petigara B R, Blough N V, Mignerey A C. Environ. Sci. Technol., 2002, 36: 639-645
[98] Lin S S, Gurol M D. Environ. Sci. Technol., 1998, 32: 1417-1423
[99] 何惧(He J). 中国科学院化学研究所博士论文(Doctoral Dissertation of Institute of Chemistry, Chinese Academy of Sciences), 2003
[100] Kawaguchi H, Inagaki A. Chemosphere, 1994, 28: 57-62
[101] Aguer J P, Mailhot G, Bolte M. New J. Chem., 2006, 30: 191-196
[102] Andrianirinaharivelo S L, Bolte M. Chemosphere, 1992, 24: 953-958
[103] Bajt O, Mailhot G, Bolte M. Appl. Catal. B-Environ., 2001, 33: 239-248
[104] Catastini C, Sarakha M, Mailhot G, Bolte M. Sci. Total Environ., 2002, 298: 219-228
[105] Debbache N, Djebbar K, Lavedrine B, Mailhot G, Bolte M. Chemosphere, 2008, 72: 457-464
[106] Debbache N, Mailhot G, Djebbar K, Lavedrine B, Bolte M. Int. J. Photoenergy, 2005, 7: 71-78
[107] Galichet F, Mailhot G, Bonnemoy F, Bohatier J, Bolte M. Pest Manage. Sci., 2002, 58: 707-712
[108] Mailhot G, Brand N, Astruc M, Bolte M. Appl. Organomet. Chem., 2002, 16: 27-33
[109] Mazellier P, Bolte M J. Photochem. Photobiol. A-Chem., 1996, 98: 141-147
[110] Mazellier P, Bolte M. Chemosphere, 1997, 35: 2181-2192
[111] Mazellier P, Jirkovsky J, Bolte M. Pest. Sci., 1997, 49: 259-267
[112] Mest'ankova H, Mailhot G, Pilichowski J F, Krysa J, Jirkovsky J, Bolte M. Chemosphere, 2004, 57: 1307-1315
[113] Poulain L, Mailhot G, Wong-Wah-Chung P, Bolte M. J. Photochem. Photobiol. A-Chem., 2003, 159: 81-88
[114] Wong-Wah-Chung P, Mailhot G, Aguer J P, Bolte M. Chemosphere, 2006, 65: 2185-2192
[115] Wong-Wah-Chung P, Mailhot G, Bolte M. Inte. J. Photoenergy, 2003, 5: 37-42
[116] Andreozzi R, Marotta R. Water Res., 2004, 38: 1225-1236
[117] Mailhot G, Astruc M, Bolte M. Organomet. Chem., 1999, 13: 53-61
[118] Ou X X, Quan X, Chen S, Zhao H M, Zhang Y B J. Agr. Food Chem., 2007, 55: 8650-8656
[119] Ou X X, Chen S, Quan X, Zhao Y Z J. Geochem. Explor., 2009, 102: 49-55
[120] Kwan W, Voelker B M. Environ. Sci. Technol., 2004, 38: 3425-3431
[121] Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35: 3683-3690
[122] Fukushima M, Tatsumi K, Morimoto K. Environ. Sci. Technol., 2000, 34: 2006-2013
[123] Jeong H Y, Hayes K. Environ. Sci. Technol., 2003, 37: 4650-4655
[124] O'Loughlin E J, Hemner K M, Burris D. Environ. Sci. Technol., 2003, 37: 2905-2912
[125] Elsner M, Schwarzenbach R P, Haderlein S B. Environ. Sci. Technol., 2004, 38: 799-807
[126] Zuo Y G, Zhan J, Wu T X. J. Atmos. Chem., 2005, 50: 195-210
[127] Pehkonen S O, Slefert R, Erel Y, Webb S, Hoffmann M R. Environ. Sci. Technol., 1993, 27: 2056-2062
[128] Kimbrough D E, Cohen Y, Winer A M, Creelman L, Mabuni C. Crit. Rev. Environ. Sci. Technol., 1999, 29: 1-46
[129] Espenson J H. J. Am. Chem. Soc., 1970, 92: 1880-1883
[130] Buerge I J, Hug S J. Environ. Sci. Technol., 1997, 31: 1426-1432
[131] Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1993, 27: 1572-1578
[132] Kieber R, Helz G R. Environ. Sci. Technol., 1992, 26: 307-312
[133] Gaberell M, Chin Y P, Hug S J, Sulzberger B. Environ. Sci. Technol., 2003, 37: 4403-4409
[134] Hug S J, Laubscher H U, James B R. Environ. Sci. Technol., 1997, 31: 160-170
[135] Zhang H, Bartlett R J. Environ. Sci. Technol., 1999, 33: 588-594
[136] Wang Z H, Ma W H, Chen C C, Zhao J C. Environ. Sci. Technol., 2008, 42: 7260-7266
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[3] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[4] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[5] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[8] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[9] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[10] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[11] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[12] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.
[13] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[14] 杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 镍铁水滑石电催化氧析出研究进展[J]. 化学进展, 2020, 32(9): 1386-1401.
[15] 林鑫, 管凡夫, 温佳琳, 邵攀霖, 张绪穆. 二茂铁骨架系列三齿配体的合成及其在铱催化不对称氢化中的应用[J]. 化学进展, 2020, 32(11): 1680-1696.