English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

硫醇-烯/炔点击化学合成功能聚合物材料

杨正龙1,2*, 陈秋云1, 周丹1, 卜弋龙1   

  1. 1. 同济大学材料科学与工程学院 先进土木工程材料教育部重点实验室 上海 200092;
    2. 上海市特殊人工微结构材料与技术重点实验室 上海 200092
  • 收稿日期:2011-07-01 修回日期:2011-08-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 杨正龙 E-mail:yangzhenglong@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50703029)、中央高校基本科研业务费专项基金项目(No.0500219145)、国家环境保护公益性行业科研专项项目(No.2012467026)、上海市青年科技启明星计划项目(No.09QA1406300)、同济大学先进土木工程材料教育部重点实验室青年基金项目(No.2010104)和上海市金属功能材料重点实验室开放基金项目(No.2009106)资助

Synthesis of Functional Polymer Materials via Thiol-Ene/Yne Click Chemistry

Yang Zhenglong1,2*, Chen Qiuyun1, Zhou Dan1, Bu Yilong1   

  1. 1. School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092;
    2. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Shanghai 200092, China
  • Received:2011-07-01 Revised:2011-08-01 Online:2012-03-24 Published:2011-11-25
点击化学具有反应条件温和、产率高、速率快、产物容易分离以及高度选择性等优点,成为国内外研究的热点之一。硫醇-烯/炔光化学反应作为新型高效的点击反应近年来备受关注,通过这种方法制备高性能及功能性聚合物材料也是新材料领域的前沿研究内容。本文综述了近年来硫醇-烯/炔点击化学在功能聚合物材料合成中的研究成果,详细介绍了硫醇-烯/炔点击化学的特点、优势及其反应机理,重点归纳了利用硫醇-烯/炔点击化学合成线型、超支化、交联等分子结构的功能聚合物材料的研究进展,并对由这种方法合成功能聚合物的单体特点、反应路线及产物应用进行了阐述,最后对硫醇-烯/炔点击化学的进一步应用前景做了展望。
Click chemistry has drawn considerable attention in less than a decade due to its unique advantages, such as simple reaction conditions, high reaction efficiency, high yield, easy post-treatment and high selectivity for the obtained products. Recently, as a new and efficient click reaction, thiol-ene/yne click chemistry has raised much interest and will probably be the main direction for development in click chemistry. On the other hand, synthesis of high-performance functional polymer materials is one of the hot topics of novel material research. In this review, we introduce the characteristics, advantages and reaction mechanism of thiol-ene/yne click chemistry. Research progresses of thiol-ene/yne click chemistry in functional polymer synthesis are highlighted, with focus on the synthetic route of linear, hyperbranched, cross-linked and other types of functional polymers via this method. The monomer features, product features and potential applications of different types of functional polymer materials synthesized by thiol-ene/yne click reaction are also discussed in detail. Furthermore, the problems in thiol-ene/yne click chemistry that still should be resolved are pointed out, and future applications are prospected. Contents
1 Introduction
2 Thiol-ene/yne click chemistry
2.1 Characteristics and advantages of thiol-ene/ yne click chemistry
2.2 Reaction mechanism of thiol-ene/yne click chemistry
3 Functional polymers synthesized by thiol- ene/yne click chemistry
3.1 Synthesis and application of linear polymers
3.2 Synthesis and application of hyper-branched polymers
3.3 Synthesis and application of cross-linked polymers
3.4 Synthesis and application of other type of polymers
4 Conclusions and outlook

中图分类号: 

()
[1] Zheng H Y, Li Y L, Zhou C J, Li Y J, Yang W L, Zhou W D, Zuo Z C, Liu H B. Chem. Eur. J., 2011, 17: 2160-2167
[2] Boulden J E, Cramer N B, Schreck K M, Couch C L, Bracho-Troconis C, Stansbury J W,Bowman C N. Dent. Mater. J., 2011, 27: 267-272
[3] White M A, Maliakal A, Turro N J, Koberstein J. Macromol. Rapid Commun., 2008, 29: 1544-1548
[4] Antoni P, Robb M J, Campos L, Montanez M, Hult A, Malmström E, Malkoch M, Hawker C J. Macromolecules, 2010, 43: 6625-6631
[5] 邱素艳(Qiu S Y),高森(Gao S),林振宇(Lin Z Y),陈国南(Chen G N). 化学进展(Progress in Chemistry), 2011, 23(4): 637-648
[6] 陈琳(Chen L),石乃恩(Shi N E),钱妍(Qian Y), 解令海(Xie L H),范曲立(Fan Q L),黄维(Huang W).化学进展(Progress in Chemistry), 2010, 22(2/3): 406-416
[7] Hoyle C E, Lee T Y, Roper T. J. Polym Sci Part A: Polym. Chem., 2004, 42: 5301-5338
[8] Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, Bowman C N. Macromolecules, 2009, 42: 211-217
[9] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004-2021
[10] Qin A, Jim C K W, Lu W, Lam J W Y, Häussler M, Dong Y, Sung H H Y, Williams I D, Wong G K L, Tang B Z. Macromolecules, 2007, 40: 2308-2317
[11] Cavalieri F, Postma A, Lee L, Caruso F. ACS Nano, 2009, 3: 234-240
[12] Britcher L, Barnes T J,Griesser H J, Prestidge C A. Langmuir,2008, 24: 7625-7627
[13] Zhou Y, Wang S X, Zhang K, Jiang X Y. Angew. Chem. Int. Ed., 2008, 47: 7454-7456
[14] Wang Q, ChanT R, Hilgraf R, FokinV V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192-3193
[15] Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126: 15046-15047
[16] Senyurt A F, Wei H, Hoyle C E, Piland S G, Gould T E. Macromolecules, 2007, 40: 4901-4909
[17] Kade M J, Burke D J, Hawker C J. J.Polym. Sci., Part A: Polym. Chem., 2010,48: 743-750
[18] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49: 1540-1573
[19] Reddy S K, Cramer N B, Bowman C N. Macromolecules,2006, 39: 3673-3680
[20] Claudino M, Johansson M, Jonsson M. Eur. Polym. J., 2010,46: 2321-2332
[21] Lowe A B, Harvison M A. Aust. J. Chem., 2010, 63: 1251-1266
[22] Chan J W, Hoyle C E, Lowe A B. J. Am. Chem. Soc., 2009, 131: 5751-5753
[23] Minozzi M, Monesi A, Nanni D,Spagnolo P, Marchetti N, Massi A. J. Org. Chem., 2011, 76: 450-459
[24] Park H Y, KloxinC J, Scott T F, Bowman C N. Macromolecules, 2010, 43: 10188-10190
[25] Ma J, Cheng C, Sun G R, Wooley K L. Macromolecules, 2008, 41: 9080-9089
[26] Li G L, Wan D, Neoh K G, Kang E T. Macromolecules, 2010, 43: 10275-10282
[27] Li G L, Xu L Q, Tang X Z, Neoh K G, Kang E T. Macromolecules, 2010, 43: 5797-5803
[28] Chen G J, Amajjahe S, Stenzel M H. Chem.Commun., 2009, 1198-1200
[29] Diehl C, Schlaad H. Macromol. Biosci., 2009, 9: 157-161
[30] Lluch C, Ronda J C, Galià M, Lligadas G, Cádiz V. Biomacromolecules, 2010, 11: 1646-1653
[31] Jonkheijm P, Weinrich D, Köhn M, Engelkamp H, Christianen P C M, Kuhlmann J, Maan J C, Nüsse D, Schroeder H, Wacker R, Breinbauer R, Niemeyer C M, Waldmann H. Angew. Chem. Int. Ed., 2008, 47: 4421-4424
[32] Khire V, Lee T, Bowman C N. Macromolecules, 2008, 41: 7440-7447
[33] Khire V S, Benoit D S W, Anseth K S, Bowman C N. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 7207-7239
[34] Liu J Z, Lam J W Y, Jim C K W, Ng J C Y, Shi J B, Su H M, Yeung K F, HongY N, Faisal M, Yu Y, Wong K S,Tang B Z. Macromolecules, 2011, 44: 68-79
[35] Temel G, Karaca N, Arsu N. J.Polym. Sci. Part A: Polym. Chem., 2010, 48: 5306-5312
[36] 袁伟忠(Yuan W Z),张锦春(Zhang J C),魏静仁(Wei J R).化学进展(Progress in Chemistry), 2011, 23(4): 760-771
[37] Yu B, Chan J W, Hoyle C E, Lowe R B.J.Polym. Sci. Part A: Polym. Chem., 2009, 47: 3544-3557
[38] Killops K L, Campos L M, Hawker C J. J. Am. Chem. Soc., 2008, 130: 5062-5064
[39] Montaez M I, Campo L M, Antoni P, Maria I. Hed Y, Walter M V, KrulB T, Khan A, Hult A, Hawker C J, Malkoch M. Macromolecules, 2010, 43: 6004-6013
[40] Ortiz R A, Flores R V G, Valdéz A E G, Duarte M L B. Prog. Org. Coat., 2010, 69: 463-469
[41] Chen G, Kumar J, Gregory A, Stenzel M H. Chem. Commun., 2009, 6291-6293
[42] Liu W, Dong C M. Macromolecules, 2010, 43: 8447-8455
[43] Konkolewicz D, Gray-Weale A, Perrier S. J. Am. Chem. Soc., 2009, 131: 18075-18077
[44] Ortiz R A, Martinez A Y R, Valdez A E G, Duarte M L B. Carbohydr. Polym., 2010, 82: 822-828
[45] Chen Z G, Chisholm B J, Patani R,Wu J F, Fernando S, Jogodzinski K,Webster D C. J. Coat. Technol. Res., 2010, 7: 603-613
[46] Rodriguez E D, Luo X F, Mather P T. ACS Appl. Mater. Interfaces, 2011, 3: 152-161
[47] akmakcl E, Mülazim Y, Kahraman M V, Apohan N K.React. Funct. Polym., 2011,71: 36-41
[48] DeForest C A, Sims E A, Anseth K S. Chem. Mater., 2010, 22: 4783-4790
[49] Lundberg P, Bruin A, Klijnstra J W, Hult A, Nyström A M, ohansson M, Malkoch M, Hult A. ACS Appl. Mater. Interfaces, 2010, 2: 903-912
[50] Shin J, Matsushima H, Comer C M, Bowman C N, Hoyle C E. Chem. Mater., 2010, 22: 2616-2625
[51] Chan J W,Shin J, Hoyle C E, Bowman C N, Lowe A B. Macromolecules, 2010, 43: 4937-4942
[52] Stanford M J, Pflughaupt R L, Dove A P. Macromolecules, 2010, 43: 6538-6541
[53] Kim D, Kim E, Lee J, Hong S, Sung W, Lim N, Park C G, Kim K. J. Am. Chem. Soc., 2010, 132: 9908-9919
[54] Dong Z M, Liu X H, Liu H W, Li Y S. Macromolecules, 2010, 43: 7985-7992
[55] Wang G W, Fan X S, Huang J L. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3797-3806
[56] Yu X F, Zhong S, Li X P, Tu Y F,Yang S G, Horn R M V, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D. J. Am. Chem. Soc., 2010, 132: 16741-16744
[57] Prasath R A, Gokmen M T, Espeel P, Prez F E D. Polym. Chem., 2010, 1: 685-692
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[8] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[14] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[15] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.