English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

聚丙烯腈溶液的凝胶化研究

万锕俊*, 谭连江   

  1. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2011-07-01 修回日期:2011-10-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 万锕俊 E-mail:wanajun@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21076124)、中国博士后科学基金项目(No.20100480592,201104269)和国家科技支撑计划项目(No.2008BAC46B08)资助

Gelation of Polyacrylonitrile Solution

Wan Ajun*, Tan Lianjiang   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2011-07-01 Revised:2011-10-01 Online:2012-03-24 Published:2011-11-25
聚丙烯腈是用途最广泛的聚合物之一,其溶于适当溶剂中形成的聚丙烯腈溶液是制备聚丙烯腈纤维、渗透膜等高分子材料的原料。聚丙烯腈溶液的物理化学性质对所制备材料的性能有很大的影响。本文对高分子溶液的凝胶化和高分子凝胶的特点做了简要介绍,并介绍了聚丙烯腈及其凝胶的特点。根据高分子浓溶液体系的特点提出用于表征聚丙烯腈溶液凝胶化的主要方法。从浓度和温度对聚丙烯腈溶液凝胶化行为的影响、熟化和非溶剂对聚丙烯腈溶液凝胶化行为的影响、聚丙烯腈溶液凝胶化的热可逆性、聚丙烯腈溶液凝胶化的分形特征以及聚丙烯腈凝胶的交联机理这几个方面对已有聚丙烯腈溶液的凝胶化研究成果和最新进展进行了综述。最后对聚丙烯腈溶液凝胶化和聚丙烯腈凝胶的研究前景做了展望。
Polyacrylonitrile (PAN) is one of the most widely used polymers. PAN solutions using suitable solvents are the precursors for fabrication of PAN fibers, osmotic membranes and other PAN-related materials. The physical and chemical properties of PAN solutions have great effect on the performance of the resultant materials. In this article, the gelation characteristics of polymer solution and the characteristics of polymer gels as well as the characteristics of PAN and PAN gels are introduced. Suitable characterization methods for the gelation of PAN solutions are proposed according to the properties of concentrated polymer solution systems. The recent research findings and latest progress of gelation of PAN solutions are summarized in the following respects: influences of concentration and temperature on gelation behavior of PAN solutions, influences of aging and non-solvent on gelation behavior of PAN solutions, thermoreversibility of gelation of PAN solutions, fractal characteristics of gelation of PAN solutions, and crosslinking mechanism of polyacrylonitrile gels. The gelation behavior of PAN solutions and the state of PAN gels have been found to be greatly affected by external environment and the composition of the gels. Finally the research prospect of the gelation of PAN solutions and PAN gels is expected. Contents
1 Introduction
2 Gelation of polymer solutions
3 Gelation behavior of polyacrylonitrile solutions
3.1 Influences of concentration and temperature on gelation behavior of polyacrylonitrile solutions
3.2 Influences of aging and non-solvent on gelation behavior of polyacrylonitrile solutions
3.3 Thermoreversibility of gelation of polyacrylonitrile solutions
3.4 Fractal characteristics of gelation of polyacrylonitrile solutions
3.5 Crosslinking mechanism of polyacrylonitrile gels
4 Conclusions and outlook

中图分类号: 

()
[1] Pan Y S, Xiong D S, Chen X L. J. Mater. Sci., 2007, 42: 5129-5134
[2] Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Med. Biol., 2009, 30: 1419-1422
[3] Tanaka Y. Macromol. Symp., 2003, 200: 265-270
[4] Chiu H T, Wang J H. J. Appl. Polym. Sci., 1998, 70: 1009-1018
[5] Te Nijenhuis K, Dijkstra H. Rheol. Acta, 1975, 14: 71-84
[6] Michon C, Cuvelier G, Launay B. Rheol. Acta, 1993, 32: 94-103
[7] Madbouly S A, Otaigbe J U. Macromolecules, 2005, 38: 10178-10184
[8] Lue A, Zhang L. J. Phys. Chem. B, 2008, 112: 4488-4495
[9] Appaw C, Gilbert R D, Khan S A, Kadla J F. Biomacromolecules, 2007, 8: 1541-1547
[10] Sugimoto M, Hida H, Taniguchi T, Koyama K, Aoki Y. Rheol. Acta, 2007, 46: 957-964
[11] Russo P S. Reversible Polymeric Gels and Related Systems. ACS Symposium Series 350. Washington DC: American Chemical Society, 1987. 11-25
[12] Nijenhuis K. Adv. Polym. Sci., 1997, 130: 96-105
[13] Gerasimov V I, Chvalun S N, Kazarin L A, Goponenko A A, Mashchenko V I, Filyyakin A M. Fiber. Chem., 2001, 33(3): 183-188
[14] Labudzinska A, Ziabicki A. Kolloid Z. Z. Polym., 1971, 243: 21-27
[15] Beckmann J, Zenke D. Colloid. Polym. Sci., 1993, 271: 436-445
[16] Flodin P. Macromol. Chem. Macromol. Symp., 1988, 22: 253-257
[17] Bisschops J. J. Polym. Sci., 1955, 17: 89-98
[18] Bashir Z. J. Polym. Sci. Polym. Phys., 1992, 30: 1299-1304
[19] Bashir Z. Polymer, 1992, 33(30): 4304-4313
[20] Bashir Z, Atureliya S K. J. Mater. Sci., 1993, 28: 2721-2732
[21] Smith P, Lemstra P J, Booij H C. J. Polym. Sci. Polym. Phys., 1981, 19: 877-885
[22] Krik H, Sourirajan S. J. Appl. Polym. Sci., 1973, 17: 3717-3726
[23] Payro E R, Llacuna J L. J. Non-Cryst. Solids, 2006, 352: 2220-2225
[24] Li Y Q, Shi T F, An L J, Lee J, Wang X Y, Huang Q R. J. Phys. Chem. B, 2007, 111: 12081-12087
[25] Zhang R, Shi T F, An L J, Sun Z Y, Tong Z. J. Phys. Chem. B, 2010, 114: 3449-3456
[26] Mellema M, van Vliet T, van Opheudsen J H J. J. Rheol., 2002, 46: 11-29
[27] Ikeda S, Foegeding E A, Hagiwara T. Langmuir, 1999, 15: 8584-8589
[28] Muller R, Gerard E, Dugand P, Rempp P, Gnanou Y. Macromolecules, 1991, 24: 1321-1326
[29] Takahashi M, Yokoyama K, Masuda T, Takigawa T. J. Chem. Phys., 1994, 101: 798-804
[30] Muthukumar M. Macromolecules, 1989, 22: 4656-4658
[31] Martin J E, Adolf D, Wilcoxon J P. Phys. Rev. A, 1989, 39: 1325-1332
[32] Winter H H, Chambon F. J. Rheol., 1986, 30: 367-382
[33] Kobayashi K, Huang C I, Lodge T P. Macromolecules, 1999, 32: 7070-7077
[34] Muthukumar M, Winter H H. Macromolecules, 1986, 19: 1284-1285
[35] Zhao Y, Cao Y, Yang Y, Wu C. Macromolecules, 2003, 36: 855-859
[36] Madbouly S A, Otaigbe J U, Nanda A K, Wicks D A. Polymer, 2005, 46: 10897-10907
[37] Te Nijenhuis K, Winter H H. Macromolecules, 1989, 22: 411-414
[38] Michon C, Cuvelier G, Launay B. Rheol. Acta, 1993, 32: 94-103
[39] Chambon F, Winter H H. J. Rheol., 1987, 31: 683-697
[40] Chambon F, Winter H H. Polym. Bull., 1985, 13: 499-503
[41] Kakiuchi M, Aoki Y, Watanabe H, Osaki K. Macromolecules, 2001, 34: 2987-2991
[42] Izuka A, Winter H H. Macromolecules, 1992, 25: 2422-2428
[43] Lue A, Zhang L. J. Phys. Chem., 2008, 112: 4488-4495
[44] Masataka S, Hirokazu H, Takashi T. Rheol. Acta, 2007, 46: 957-964
[45] Winter H H, Morganelli P, Chambon F. Macromolecules, 1988, 21: 532-535
[46] Kjoniksen A L, Nystrom B. Macromolecules, 1996, 29: 5252-5258
[47] Madbouly S A, Ougizawa T. J. Macromol. Sci. Phys., 2004, B43: 471-487
[48] Tan L, Liu S, Pan D. J. Phys. Chem. B, 2009, 113(3): 603-609
[49] Tan L, Pan D, Pan N. Polymer, 2008, 49: 5676-5682
[50] Bisschops J. J. Polym. Sci., 1955, 17: 89-98
[51] Tan L, Liu S, Pan D. Colloid. Surf. A, 2009, 340: 168-173
[52] Du W, Chen H, Xu H, Pan D, Pan N. J. Polym. Sci. Polym. Phys., 2009, 47: 1437-1442
[53] Tan L, Pan D. Proceedings of International Conference on Advanced Fibers and Polymer Materials. Shanghai: Chemical Engineering Press, 2009. 296-298
[54] Appaw C, Gilbert R D, Khan S A, Kadla J F. Biomacromolecules, 2007, 8: 1541-1547
[55] Bushell G C, Yan Y D, Woodfield D, Raper J, Amal R. Adv. Colloid. Interf. Sci., 2002, 95: 1-50
[56] Mellema M, Heesakkers J W M, van Opheusden J H J, van Vliet T. Langmuir, 2000, 16: 6847-6854
[57] Bremer L G B, Bijsterbosch B H, Schrijvers R, van Vliet T. Colloid. Surf., 1990, 51: 159-170
[58] Marangoni A G, Barbut S, McGauley S E, Marcone M, Narine S S. Food Hydrocolloid., 2000, 14: 61-74
[59] Mellema M, van Vliet T, van Opheudsen J H J. J. Rheol., 2002, 46: 11-29
[60] Ikeda S, Foegeding E A, Hagiwara T. Langmuir, 1999, 15: 8584-8589
[61] Eleya M M O, Ko S, Gunasekaran S. Food Hydrocolloid., 2004, 18: 315-323
[62] Shih W H, Shih W Y, Kim S I, Liu J, Aksay I A. Phys. Rev. A, 1990, 42: 4772-4779
[63] Tan L, Liu S, Pan D, Pan N. Soft Matter, 2009, 5: 4297-4304
[64] Tan L, Chen H, Pan D, Pan N. Euro. Polym. J., 2009, 45: 1617-1624
[65] Wu H, Morbidelli M. Langmuir, 2001, 17: 1030-1036
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[3] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[4] 唐美瑶, 王岩岩, 申赫, 车广波. 二维硫化钼的溶液法制备及其复合材料在光、电催化领域的应用[J]. 化学进展, 2018, 30(11): 1646-1659.
[5] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[6] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[7] 刘静静, 楚晖娟, 魏宏亮, 祝红征, 朱靖, 何娟. 石墨烯基水凝胶的研究进展[J]. 化学进展, 2015, 27(11): 1591-1603.
[8] 刘春桃, 童国权, 陈朝珠, 谭子芳, 全昌云, 张超. 聚合物晶胶的制备、性能及生物医学应用[J]. 化学进展, 2014, 26(07): 1190-1201.
[9] 邓罡华, 王鸿飞, 郭源. 非线性光学研究水及电解质水溶液界面——空气/电解质水溶液界面特定阴阳离子效应[J]. 化学进展, 2012, (10): 1865-1879.
[10] 张敏, 吴玉清. 压力诱导溶液中蛋白质构象变化的谱学研究[J]. 化学进展, 2011, 23(10): 2003-2011.
[11] 刘元海,王永健,于奡,张鑫锐,李久虹. 溶液相有机化合物pKa的量子化学计算*[J]. 化学进展, 2008, 20(09): 1241-1250.
[12] 朱红祥,柴欣生,王双飞,宋海农,朱俊勇. 衰减全反射-紫外/可见光谱技术应用*[J]. 化学进展, 2007, 19(0203): 414-419.
[13] 王孔江,辛亮,任洁. Na+和Cl-对CDI活化的酸性及碱性氨基酸聚合反应的高效促进效应[J]. 化学进展, 2006, 18(10): 1391-1396.
[14] 周丹,王延梅. 毛细管电泳无胶筛分介质分离DNA的机理*[J]. 化学进展, 2006, 18(0708): 987-994.
[15] 李本刚 陈正国. 表面活性剂溶液动态表面张力及吸附动力学研究*[J]. 化学进展, 2005, 17(02): 233-241.
阅读次数
全文


摘要

聚丙烯腈溶液的凝胶化研究