English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

氧化脱肟研究新进展

张国富, 温馨, 王涌, 莫卫民*, 丁成荣*   

  1. 浙江工业大学化学工程与材料学院 杭州 310014
  • 收稿日期:2011-07-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 卫民, 丁成荣 E-mail:mowm@zjut.edu.cn; dingcr2004@yahoo.com.cn
  • 基金资助:

    国家自然科学基金项目(No.20702051)资助

Recent Advances in Oxidative Deoximation

Zhang Guofu, Wen Xin, Wang Yong, Mo Weimin*, Ding Chengrong*   

  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2011-07-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
肟是有机合成中一类非常重要且常见的化合物,不仅可用作羰基化合物的保护,而且可通过肟化-脱肟过程对羰基化合物进行分离和纯化。此外,肟还可以由非羰基化合物转变而来,进而通过脱肟反应生成羰基化合物,因此,如何在温和条件下高效实现脱肟反应吸引了人们的广泛关注。目前,已报道的脱肟方法主要包括酸性水解、氧化、还原等。其中,氧化脱肟法,特别是利用过氧化氢或氧气作氧化剂的绿色氧化脱肟方法尤受重视。本文以此为重点,综述了近年来氧化脱肟方法的研究概况和最新进展,并对若干重要的体系作了详细讨论。
Oximes are extensively used as preferred derivatives for protection, purification and characterization of carbonyl compounds as well as a valid alternative pathway to prepare carbonyl compounds. Therefore, there has been a continued interest in the development of procedures like hydrolysis, reduction, oxidation for the effective regeneration of carbonyl compounds. Among them, the oxidative deoximation has attracted much attention currently. In this paper, the recent progress in oxidative deoximation, especially in utilizing hydrogen peroxide and oxygen as the green oxidants, are discussed in detail. Contents
1 Introduction
2 Deoximation with traditional oxidizing agents
2.1 Deoximation using metal salts
2.2 Deoximation using nonmetallic oxidants
3 Deoximation with H2O2
4 Deoximation with O2
5 Conclusions and Outlook

中图分类号: 

()
[1] Corey E J, Hopkins P B, Kim S, Yoo S E, Nambiar K P, Falck J R. J. Am. Chem. Soc., 1979, 101: 7131-7134
[2] (a) Hasi H B, Susie A G, Heider R L. J. Org. Chem., 1950, 15: 8-14 (b) Corma A, Serna P, García H. J. Am. Chem. Soc., 2007, 129: 6358-6359 (c) Serna P, López-Haro M, Calvino J J, Corma A. J. Catal., 2009, 263: 328-334
[3] Williams D G. The Chemistry of Essential Oils: An Introduction for Aromatherapists, Beauticians, Retailers and Students. Dorset: Micelles Press, 2008
[4] (a) Hershberg E B. J. Org. Chem., 1948, 13: 542-546 (b) DePuy C H, Ponder B W. J. Am. Chem. Soc., 1959, 81: 4629-4631(c) Cava M P, Litle R L, Napier D R. J. Am. Chem. Soc., 1958, 80: 2257-2260
[5] (a) Massey E H, Kitchell B, Martin L D, Gerzon K, Murphy H W. Tetrahedron Lett., 1970, 11: 157-160 (b) Curran D P, Brill J F, Rakiewicz D M. J. Org. Chem., 1984, 49: 1654-1656 (c) Wang S S, Sukenik C N. J. Org. Chem., 1985, 50: 5448-5450
[6] 李伟(Li W), 王佳兰(Wang J L), 张贵生(Zhang G S), 李志鸿(Li Z H), 蔡昆(Cai K). 有机化学(Chinese Journal of Organic Chemistry), 1993, 13: 545-548
[7] Kamal A, Rao M V, Meshram H M. J. Chem. Soc. Perkin Trans. 1, 1991, 2056-2057
[8] (a) 赵文超(Zhao W C), 沙耀武(Sha Y W). 有机化学(Chinese Journal of Organic Chemistry), 1996, 16: 121-132 (b) Corsaro A, Chiacchio U, Pistara V. Synthesis, 2001, 1903-1931
[9] Firouzabadi H, Iranpoor N, Amani K. Synth. Commun., 2004, 34: 3587-3593
[10] Ghorbani-Choghamarani A, Shiri L, Zeinivand J. Bull. Korean Chem. Soc., 2008, 29: 2496-2498
[11] Heravi M M, Ajami D, Mohajerani B, Tabar-Hydar K, Ghassemzadeh M. Synth. Commun., 2002, 32: 3325-3330
[12] Demir A S, Tanyeli C, Altinel E. Tetrahedron Lett., 1997, 38: 7267-7270
[13] Shaabani A, Naderi S, Rahmati A, Badri Z, Darvishi M, Lee D G. Synthesis, 2005, 3023-3025
[14] Chrisman W, Blankinship M J, Taylor B, Harris C E. Tetrahedron Lett., 1997, 38: 5427-5428
[15] De S K. Synth. Commun., 2004, 34: 2289-2294
[16] Barhate N B, Gajare A S, Wakharkar R D, Sudalai A. Tetrahedron Lett., 1997, 38: 653-656
[17] Deshpande S S, Sonavane S U, Jayaram R V. Catal. Commun., 2008, 9: 639-644
[18] Bose D S, Srinivas P. Synth. Commun., 1997, 27: 3835-3838
[19] Hajipour A R, Mallakpour S E, Baltork M, Adibi H. Synth. Commun., 2001, 31: 3401-3409
[20] Bose D S, Srinivas P. Synlett, 1998, 977-978
[21] Krishnaveni N S, Surendra K, Nageswar Y V D, Rao K R. Synthesis, 2003, 1968-1970
[22] Chaudhari S S, Akamanchi K G. Tetrahedron Lett., 1998, 39: 3209-3212
[23] Narender M, Reddy M S, Krishnaveni N S, Surendra K, Nageswar Y V D, Rao K R. Synth. Commun., 2006, 36: 1463-1475
[24] Yadav J S, Sasmal P K, Chand P K. Synth. Commun., 1999, 29: 3667-3671
[25] Gogoi P, Hazarika P, Konwar D. J. Org. Chem., 2005, 70: 1934-1936
[26] Chandrasekhar S, Gopalaiah K. Tetrahedron Lett., 2002, 43: 4023-4024
[27] Bandgar B P, Makone S S. Org. Prep. Proced. Int., 2000, 32: 391-394
[28] Reddy M S, Narender M, Rao K R. Synth. Commun., 2004, 34: 3875-3881
[29] Khazaei A, Rostamitt A. Org. Prep. Proced. Int., 2006, 38: 484-490
[30] Khazaei A, Vaghei R G. Tetrahedron Lett., 2002, 43: 3073-3074
[31] Khazaei A, Manesh A A, Rostami A. J. Chem. Res., 2004, 695-697
[32] Khazaei A, Vaghei R G, Tajbakhsh M. Tetrahedron Lett., 2001, 42: 5099-5100
[33] Shaabani A, Rahmati A, Naderi S. Synth. Commun., 2007, 37: 4035-4042
[34] Vaghei R G, Khazaei A. Phosphorus, Sulfur, Silicon Relat. Elem., 2004, 179: 55-59
[35] Kim B R, Lee H G, Kim E J, Lee S G, Yoon Y J. J. Org. Chem., 2010, 75: 484-486
[36] De S K. Synth. Commun., 2004, 34: 4409-4415
[37] Ganguly N C, Barik S K. Synthesis, 2008, 425-428
[38] Keseru G M, Balogh G T, Karancsi T. Bioorg. Med. Chem. Lett., 2000, 10: 1775-1777
[39] Jain N, Kumar A, Chauhan S M S. Tetrahedron Lett., 2005, 46: 2599-2602
[40] Ren Q G, Zhou X T, Ji H B. J. Porphyrins Phthalocyanines, 2011, 15: 215-216
[41] Ballistreri F P, Chiacchio U, Rescifina A, Tomaselli G, Toscano R M. Molecules, 2008, 13: 1230-1237
[42] Ezabadi A, Najafi G R, Hashemi M M. Chin. Chem. Lett., 2007, 18: 1451-1454
[43] Ganguly N C, Nayek S, Barik S K. Synth. Commun., 2009, 39: 4053-4061
[44] Blay G, Benach E, Fernández I, Galletero S, Pedro J R, Ruiz R. Synthesis, 2000, 403-406
[45] Hashemi M M, Beni Y A. Synth. Commun., 2001, 31: 295-299
[46] Hashemi M M, Akhbari M, Karimi-Jaberi Z. Lett. Org. Chem., 2006, 3: 121-122
[47] Yang Y, Zhang D, Wu L Z, Chen B, Zhang L P, Tung C H. J. Org. Chem., 2004, 69: 4788-4791
[48] 张栋(Zhang D), 吴骊珠(Wu L Z), 张丽萍(Zhang L P), 佟振合(Tong Z H). 感光科学与光化学(Photographic Science and Photochemistry), 2003, 21: 405-411
[49] Grirrane A, Corma A, Garcia H. J. Catal., 2009, 268: 350-355
[50] (a) Sharma V B, Jain S L, Sain B. Tetrahedron Lett., 2003, 44: 383-386 (b) Perollier C, Sorokin A B. Chem. Commun., 2002, 1548-1549
[51] Shaabani A, Farhangi E. Appl. Catal. A, 2009, 371: 148-152
[52] Zhou X T, Yuan Q L, Ji H B. Tetrahedron Lett., 2010, 51: 613-617
[53] Zhang G F, Wen X, Wang Y, Mo W M, Ding C R. J. Org. Chem., 2011, 76: 4665-4668
[54] (a) Liu R H, Liang X M, Dong C Y, Hu X Q. J. Am. Chem. Soc., 2004, 126: 4112-4113 (b) Wang N W, Liu R H, Chen J P, Liang X M. Chem. Commun., 2005, 5322-5324 (c) Liang X M, Fu D M, Liu R H, Zhang Q, Zhang T Y, Hu X Q. Angew. Chem. Int. Ed., 2005, 44: 5520-5523 (d) Zhang G F, Liu R H, Xu Q, Ma L X, Liang X M. Adv. Synth. Catal., 2006, 348: 862-866 (e) Peng Y R, Fu D M, Liu R H, Zhang F F, Xue X Y, Xu Q, Liang X M. Appl. Catal. B: Environ., 2008, 79: 163-170 (f) Wang X L, Liu R H, Jin Y, Liang X M. Chem. Eur. J., 2008, 14: 2679-2685 (g) Peng Y R, Fu D M, Liu R H, Zhang F F, Liang X M. Chemosphere, 2008, 71: 990-997 (h) Fu D M, Peng Y R, Liu R H, Zhang F F, Liang X M. Chemosphere, 2009, 75: 701-706
[1] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[4] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[5] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[6] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[7] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[8] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[9] 佘远斌, 邓金辉, 张龙, 沈海民*. 氧气催化氧化环己烷[J]. 化学进展, 2018, 30(1): 124-136.
[10] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999.
[11] 易罗财, 次素琴, 孙成丽, 温珍海. 非水系锂氧气电池正极材料研究现状[J]. 化学进展, 2016, 28(8): 1251-1264.
[12] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[13] 王伟涛, 姚敏, 马养民, 张金. 氧气直接氧化苯制备苯酚[J]. 化学进展, 2014, 26(10): 1665-1672.
[14] 王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(08): 1246-1259.
[15] 王猛, 惠永海, 张雪华, 魏雅娜, 史岷山, 王吉德*. 四氢呋喃的氧化[J]. 化学进展, 2013, 25(07): 1158-1165.
阅读次数
全文


摘要

氧化脱肟研究新进展