English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

Trost氮杂半冠醚手性配体在不对称催化反应中的应用

李高伟1, 王晓娟2, 赵文献1*, 鲁刘杰2, 刘冠军2, 王敏灿2*   

  1. 1. 商丘师范学院化学化工学院 有机新材料合成重点实验室 商丘 476000;
    2. 郑州大学化学系 郑州 450052
  • 收稿日期:2011-06-01 修回日期:2011-08-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 赵文献, 王敏灿 E-mail:zhwx195812@yahoo.com.cn; wangmincan@zzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20972140,20972091,21172139)和河南省教育厅自然科学研究计划项目(No.2011B150029)资助

Trost-Type Chiral Semi-Azacrown Ether Ligands in Asymmetric Catalysis

Li Gaowei1, Wang Xiaojuan2, Zhao Wenxian1*, Lu Liujie2, Liu Guanjun2, Wang Mincan2*   

  1. 1. Key Laboratory of New Organic Materials Synthesis, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China;
    2. Department of Chemistry, Zhengzhou University, Zhengzhou 450052, China
  • Received:2011-06-01 Revised:2011-08-01 Online:2012-03-24 Published:2011-11-25
双功能手性金属络合物催化的不对称反应是目前有机化学研究的热点之一。本文综述了氮杂半冠醚手性配体与金属有机试剂络合的双金属催化剂,在催化不对称aldol反应、不对称Henry反应、不对称Michael反应、不对称Mannich反应、不对称Friedel-Crafts烷基化反应、不对称炔基化反应、不对称硅氰化反应、共聚反应、去对称化反应以及不对称Nozaki-Hiyama烯丙基化反应体系中的应用进展,重点介绍了不同催化体系对催化剂和反应底物之间立体效应和电子效应的影响,总结了控制反应立体选择性的规律以及有关催化反应的机理。
Bifunctional asymmetric metal-catalysis has attracted a considerable amount attention for organic chemists. This review provides an overview of recent advances on the dinuclear metal catalysts and their applications in asymmetric catalytic reactions, including aldol reaction, Henry reaction, Michael addition reaction, Mannich reaction, Friedel-Crafts alkylation reaction, Nozaki-Hiyama allylation, enantioselective alkynylation, cyanosilylation, desymmetrization and copolymerization, with an emphasis on the clarification of the relationship between either sterical or electronic effects of catalysts and substrates in different catalyst systems, and summarizing the regulation that controls the stereoselectivity and proposed mechanism of the reaction. Contents
1 Introduction
2 The applications of Trost-type chiral semi-azacrown ether ligand in asymmetric catalysis
2.1 Asymmetric aldol reaction
2.2 Asymmetric Mannich-type reaction
2.3 Asymmetric Henry reaction
2.4 Asymmetric Michael addition reaction
2.5 Asymmetric alkynylation of aldehydes
2.6 Cyanosilylation of aldehydes
2.7 Asymmetric Friedel-Crafts alkylation reaction
2.8 Asymmetric desymmetrization
2.9 Copolymerization of cyclohexene oxide with CO2
2.10 Nozaki-Hiyama allylation
3 Conclusion and perspectives

中图分类号: 

()
[1] Pedersen C J, Frensdorff H K. Angew. Chem. Int. Ed. Engl., 1972, 84: 16-26
[2] Cram D J, Sogah G D Y. J. Chem. Soc. Chem. Commun., 1981, 625-628
[3] Cram D J, Sogah G D Y. J. Am. Chem. Soc., 1985, 107: 8301-8302
[4] de Silva A P, de Silva S A. J. Chem. Soc. Chem. Commun., 1986, 1709-1710
[5] Tke L, Bakó P, Keserü G M, Albert M. Tetrahedron, 1998, 54: 213-222
[6] Kondo S I, Kinjo T, Yano Y. Tetrahedron Lett., 2005, 46: 3183-3186
[7] Liu H L, Zhao Q L, Hou X L, Pu L. Chem. Commun., 2011, 47: 3646-3648
[8] Lehn J M. Supramolecular Chemistry. Weinheim: Wiley-VCH, 1995
[9] Matsunaga S, Ohshima T, Shibasaki M. Adv. Synth. Catal., 2002, 344: 3-15
[10] Ma J A, Cahard D. Angew. Chem. Int. Ed., 2004, 43: 4566-4583
[11] Shibasaki M, Matsunaga S. Chem. Soc. Rev., 2006, 35: 269-279
[12] Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res., 2009, 42: 1117-1127
[13] Trost B M, Ito H. J. Am. Chem. Soc., 2000, 122: 12003-12004
[14] Matsunaga S, Das J, Roels J, Vogl E M, Yamamoto N, Iida T, Yamaguchi K, Shibasaki M. J. Am. Chem. Soc., 2000, 122: 2252-2260
[15] Kim Y S, Matsunaga S, Das J, Sekine A, Ohshima T, Shibasaki M. J. Am. Chem. Soc., 2000, 122: 6506-6507
[16] Yoshida T, Morimoto H, Kumagai N, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed., 2005, 44: 3470-3474
[17] Harada S, Handa S, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed., 2005, 44: 4365-4368
[18] Trost B M, Ito H. WO 02/41984 A2, 2002
[19] Trost B M, Silcoff E R, Ito H. Org. Lett., 2001, 3: 2497-2500
[20] Trost B M, Silcoff E R. J. Am. Chem. Soc., 2001, 123: 3367-3368
[21] Trost B M, Shin S. J. Am. Chem. Soc., 2005, 127: 8602-8603
[22] Trost B M, Fettes A. J. Am. Chem. Soc., 2004, 126: 2660-2661
[23] Trost B M, Malhotra S, Fried B. J. Am. Chem. Soc., 2009, 131: 1674-1675
[24] Li H J, Tian H Y, Wu Y C, Chen Y J, Liu L, Wang D, Li C. Adv. Synth. Catal., 2005, 347: 1247-1256
[25] Trost B M, Yeh V S C. Org. Lett., 2002, 4: 3513-3516
[26] Trost B M, Frederiksen M U, Papillon J P N, Harrington P E, Shin S, Shireman B T. J. Am. Chem. Soc., 2005, 127: 3666-3667
[27] Li H, Da C S, Xiao Y H, Li X, Su Y N. J. Org. Chem., 2008, 73: 7398-7401
[28] Trost B M, Terrell L R. J. Am. Chem. Soc., 2003, 125: 338-339
[29] Trost B M, Jaratjaroonphong J, Reutrakul V. J. Am. Chem. Soc., 2006, 128: 2778-2779
[30] Trost B M, Yeh V S C. Angew. Chem. Int. Ed., 2002, 41: 861-863
[31] Trost B M, Yeh V S C, Ito H. Org. Lett., 2002, 4: 2621-2623
[32] 李高伟(Li G W), 赵文献(Zhao W X), 郭蕊(Guo R), 刘新明(Liu X M), 郭保国(Guo B G), 王敏灿(Wang M C). 化学研究(Chemical Research), 2010, 21(5): 107-112
[33] Trost B M, Lupton D W. Org. Lett., 2007, 9: 2023-2026
[34] Gao F F, Zhu J, Tang Y, Deng M Z, Qian C T. Chirality, 2006, 18: 741-745
[35] Trost B M, Hisaindee S. Org. Lett., 2006, 8: 6003-6005
[36] Trost B M, Hitce J. J. Am. Chem. Soc., 2009, 131: 4572-4573
[37] Zhao D P, Yuan Y, Chan A S C, Wang R. Chem. Eur. J., 2009, 15: 2738-2741
[38] Zhao D P, Wang Y, Mao L J, Wang R. Chem. Eur. J., 2009, 15: 10983-10987
[39] Zhao D P, Mao L J, Wang Y, Yang D X, Zhang Q L, Wang R. Org. Lett., 2010, 12: 1880-1882
[40] Zhao D P, Mao L J, Yang D X, Wang R. J. Org. Chem., 2010, 75: 6756-6763
[41] Trost B M, Weiss A H, Wangelin A J. J. Am. Chem. Soc., 2006, 128: 8-9
[42] Trost B M, Weiss A H. Org. Lett., 2006, 8: 4461-4464
[43] Trost B M, Weiss A H. Angew. Chem. Int. Ed., 2007, 46: 7664-7666
[44] Trost B M, Chan V S, Yamamoto D. J. Am. Chem. Soc., 2010, 132: 5156-5192
[45] 李高伟(Li G W), 王晓娟(Wang X J), 赵文献(Zhao W X), 郭保国(Guo B G), 郑昕(Zheng X), 王敏灿(Wang M C). 有机化学(Chin. J. Org. Chem. ), 2010, 30: 1292-1304
[46] 李高伟(Li G W). 郑州大学硕士论文(Master Dissertation of Zhengzhou University), 2009
[47] Trost B M, Martínez-Sánchez S. Synlett, 2005, (4): 627-630
[48] Trost B M, Müller C. J. Am. Chem. Soc., 2008, 130: 2438-2439
[49] Trost B M, Mino T. J. Am. Chem. Soc., 2003, 125: 2410-2411
[50] Trost B M, Malhotra S, Mino T, Rajapaksa N S. Chem. Eur. J., 2008, 14: 7648-7657
[51] Dodd K, Morton D, Worden S, Narquizian R, Nelson A. Chem. Eur. J., 2007, 13: 5857-5861
[52] Xiao Y L, Wang Z, Ding K L. Chem. Eur. J., 2005, 11: 3668-3678
[53] Xiao Y L, Wang Z, Ding K L. Macromolecules, 2006, 39: 128-137
[54] Rozners E, Fontanez J. Letters in Organic Chemistry, 2005, 2: 524-527
[1] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[4] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[5] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[6] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[7] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[8] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[9] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
[10] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[11] 喻理德, 崔汉峰*, 樊浩, 任淑慧, 林艳. 手性季鏻盐相转移催化剂在不对称反应中的应用[J]. 化学进展, 2013, 25(05): 744-751.
[12] 林丽丽 刘小华 冯小明. 手性三齿席夫碱金属络合物催化的不对称反应*[J]. 化学进展, 2010, 22(07): 1353-1361.
[13] 徐立进 易兵 党丽敏 汤卫军. 离子液体中的不对称催化反应*[J]. 化学进展, 2010, 22(07): 1254-1273.
[14] 刘继,马保德,阳年发,范青华. 可溶性高分子负载催化剂*[J]. 化学进展, 2010, 22(07): 1457-1470.
[15] 汪海明,王正,丁奎岭. 手性自负载催化剂研究新进展[J]. 化学进展, 2010, 22(07): 1471-1481.