English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

超顺磁性纳米催化剂在有机合成中的应用

刘艳红, 周林成*, 惠新平*, 赵光辉, 李彦锋   

  1. 兰州大学化学化工学院 功能有机分子化学国家重点实验室 兰州 730000
  • 收稿日期:2011-06-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 周林成, 惠新平 E-mail:zhoulc@lzu.edu.cn; huixp@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21172099)资助

Applications of Superparamagnetically Separable Nano-Catalysts in Organic Synthesis

Liu Yanhong, Zhou Lincheng*, Hui Xinping*, Zhao Guanghui, Li Yanfeng   

  1. College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
  • Received:2011-06-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
超顺磁性纳米颗粒及其复合材料作为有机反应的催化剂,不仅能通过外加磁场实现催化剂的分离回收,且在反应介质中催化活性位点利用率高,可起到均相催化的效果。本文在系统总结近年来磁性纳米催化剂制备的基础上,阐述了磁性纳米催化剂的制备方法、结构类型和特点。同时,对催化剂在有机合成中的应用和催化效果进行了综述,对磁性纳米催化剂在反应中失活的原因做了详尽分析,展望了超顺磁性纳米颗粒的主要发展方向和今后仍需解决的问题。
Superparamagnetic nanoparticles and composite materials, which are highly active, possessing high surface to volume ratios and having high surface energies, can be used as catalysts. Since the small particle size of magnetic nanoparticles, the nano-heterogeneous catalysts can achieve similar or even higher activities compared with the homogeneous catalysts. Moreover, they can be reused after separation from the reaction system by using a magnet and simple regeneration process. The application of magnetic nano-catalysts in organic synthesis has attracted wide attention. Here, we review the preparation and application in organic synthesis of the magnetic nano-catalysts. The preparations, structures and characteristics of magnetic nano-catalysts are summarized. We also present their catalytic effect in relevant organic synthesis and analyze the deactivation of magnetic nano-catalysts in detail. Finally, the remaining problems and the future developing prospects are proposed. Contents
1 Introduction
2 Magnetic core as catalyst
3 Active center directly loaded onto magnetic nano-particles
4 Organic coatings
4.1 Dopamine coating
4.2 Silane coupling agent coating
4.3 Organic ionic compound coating
5 Ploymer coating
6 Silica coating
6.1 Metal and metal oxide nanoparticles supported on magnetic silicon nanoparticles
6.2 Metal complex catalysts supported on magnetic silicon nanoparticles
6.3 Phase transfer catalysts and small molecule catalysts supported on magnetic silicon nanoparticles
6.4 Acid and base catalysts supported on magnetic silicon nanoparticles
7 Carbon coating
8 Other coatings
9 Conclusions and outlook

中图分类号: 

()
[1] Gladysz J A. Chem. Rev., 2002, 102 (10): 3215-3216
[2] Schlögl R, Abd Hamid S B. Angew. Chem. Int. Ed., 2004, 43 (13): 1628-1637
[3] Bell A T. Science, 2003, 299 (5613): 1688-1691
[4] Cui X, Li J, Zhang Z P, Fu Y, Liu L, Guo Q X. J. Org. Chem., 2007, 72 (24): 9342-9345
[5] Ye J, Chen W, Wang D. Dalton Trans., 2008, (30): 4015-4022
[6] de Vries J G. Dalton Trans., 2006, (3): 421-429
[7] Zhang Z J, Wang Z L, Chakoumakos B C, Yin J S. J. Am. Chem. Soc., 1998, 120 (8): 1800-1804
[8] Cui Y J, Li Y F, Yang Y, Liu X, Lei L, Zhou L C, Pan F. J. Bioch., 2010, 150 (1): 171-174
[9] Shi F, Tse M K, Pohl M M, Brückner A, Zhang S, Beller M. Angew. Chem. Int. Ed., 2007, 46 (46): 8866-8868
[10] Reddy B V S, Krishna A S, Ganesh A V, Kumar G G K S N. Tetrahedron Lett., 2011, 52 (12): 1359-1362
[11] Bedford R B, Betham M, Bruce D W, Davis S A, Frost R M, Hird M. Chem. Commun., 2006, (13): 1398-1400
[12] Tong J H, Bo L L, Li Z, Lei Z Q, Xia C G. J. Mol. Catal. A Chem., 2009, 307 (1/2): 58-63
[13] Liu J, Peng X, Sun W, Zhao Y, Xia C. Org. Lett., 2008, 10 (18): 3933-3936
[14] 刘诗咏(Liu S Y), 吴家守(Wu J S), 蒋华江(Jiang H J), 金正能(Jin Z N), 姜玄珍(Jiang X Z). 有机化学(Chin. J. Org. Chem. ), 2009, 29 (10) : 1587-1592
[15] Zhang J L, Wang Y, Ji H, Wei Y G, Wu N Z, Zuo B J, Wang Q L. J. Catal., 2005, 229 (1): 114-118
[16] Zhang D H, Li G D, Li J X, Chen J S. Chem. Commun., 2008, (29): 3414-3416
[17] Kotani M, Koike T, Yamaguchi K, Mizuno N. Green Chem., 2006, 8 (8): 735-741
[18] Jun CH, Park Y J, Yeon YR, Choi JR, Lee WR, Ko SJ, Cheon J. Chem. Commun., 2006, (15): 1619-1621
[19] Polshettiwar V, Baruwati B, Varma R S. Chem. Commun., 2009, (14): 1837-1839
[20] Baruwati B, Guin D, Manorama S V. Org. Lett., 2007, 9 (26): 5377-5380
[21] Polshettiwar V, Varma R S. Org. Biomol. Chem., 2009, 7 (1): 37-40
[22] Guin D, Baruwati B, Manorama S V. Org. Lett., 2007, 9 (7): 1419-1421
[23] Polshettiwar V, Baruwati B, Varma R S. Green Chem., 2009, 11 (1): 127-131
[24] Baruwati B, Polshettiwar V, Varma R S. Tetrahedron Lett., 2009, 50 (11): 1215-1218
[25] Polshettiwar V, Varma R S. Chem. Eur. J., 2009, 15 (7): 1582-1586
[26] Gleeson O, Tekoriute R, Gun'ko Y K, Connon S J. Chem. Eur. J., 2009, 15 (23): 5669-5673
[27] Stevens P D, Li G, Fan J, Yen M, Gao Y. Chem. Commun., 2005, (35): 4435-4437
[28] Wang Z, Shen B, Aihua Z, He N. Chem. Eng. J., 2005, 113 (1): 27-34
[29] Luo S Z, Zheng X X, Cheng J P. Chem. Commun., 2008, (44): 5719-5721
[30] Ding S J, Xing Y C, Radosz M, Shen Y Q. Macromolecules, 2006, 39 (19): 6399-6405
[31] Kassaee M Z, Masrouri H, Movahedi F. Appl. Catal. A-Gen., 2011, 395 (1/2): 28-33
[32] Phan N T S, Gill C S, Nguyen J V, Zhang Z J, Jones C W. Angew. Chem., 2006, 118 (14): 2267-2270
[33] Abu-Reziq R, Wang D, Post M, Alper H. Chem. Mater., 2008, 20 (7): 2544-2550
[34] Abu-Reziq R, Wang D, Post M, Alper H. Adv. Synth. Catal., 2007, 349 (13): 2145-2150
[35] Hu A G, Yee G T, Lin W B. J. Am. Chem. Soc., 2005, 127 (36): 12486-12487
[36] Laska U, Frost C, Plucinski P, Price G. Catal. Lett., 2008, 122 (1): 68-75
[37] Yoon T J, Lee W, Oh Y S, Lee J K. New J. Chem., 2003, 27 (2): 227-229
[38] Chouhan G, Wang D S, Alper H. Chem. Commun., 2007, (45): 4809-4811
[39] Zhu Y H, Peng S C, Emi A, Su Z S, Monalisa, Kemp R A. Adv. Synth. Catal., 2007, 349 (11/12): 1917-1922
[40] Wang Y H, Lee J K. J. Mol. Catal. A Chem., 2007, 263 (1/2): 163-168
[41] Yeo K M, Lee S I, Lee Y T, Chung Y K, Lee I S. Chem. Lett., 2008, 37 (1): 116-117
[42] Arai T, Sato T, Kanoh H, Kaneko K, Oguma K, Yanagisawa A. Chem. Eur. J., 2008, 14 (3): 882-885
[43] Kim J, Lee J E, Lee J, Jang Y, Kim S W, An K, Yu J H, Hyeon T. Angew. Chem., 2006, 118 (29): 4907-4911
[44] Yi D K, Lee S S, Ying J Y. Chem. Mater., 2006, 18 (10): 2459-2461
[45] Rossi L M, Silva F P, Vono L L R, Kiyohara P K, Duarte E L, Itri R, Landers R, Machado G. Green Chem., 2007, 9 (4): 379-385
[46] Jacinto M J, Kiyohara P K, Masunaga S H, Jardim R F, Rossi L M. Appl. Catal. A-Gen., 2008, 338 (1/2): 52-57
[47] Jacinto M J, Santos O, Jardim R F, Landers R, Rossi L M. Appl. Catal. A-Gen., 2009, 360 (2): 177-182
[48] Tang H, Yu C H, Oduoro W, He H, Tsang S C. Langmuir, 2008, 24 (5): 1587-1590
[49] Mori K, Sugihara K, Kondo Y, Takeuchi T, Morimoto S, Yamashita H. J. Phys. Chem. C, 2008, 112 (42): 16478- 16483
[50] Jiang Y J, Gao Q M. J. Am. Chem. Soc., 2006, 128 (3): 716-717
[51] Zhou L, Gao C, Xu W. Langmuir, 2010, 26 (13): 11217-11225
[52] Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. Angew. Chem., 2007, 119 (37): 7169-7173
[53] Park J C, Lee H J, Jung H S, Kim M, Kim H J, Park K H, Song H. ChemCatChem, 2011, 3 (4): 755-760
[54] Lv G, Mai W, Jin R, Gao L. Synlett, 2008, (9): 1418-1422
[55] Schätz A, Hager M, Reiser O. Adv. Funct. Mater., 2009, 19 (13): 2109-2115
[56] Abu-Reziq R, Alper H, Wang D S, Post M L. J. Am. Chem. Soc., 2006, 128 (15): 5279-5282
[57] García-Garrido S E, Francos J, Cadierno V, Basset J M, Polshettiwar V. ChemSusChem, 2011, 4 (1): 104-111
[58] Li J, Zhang Y M, Han D F, Gao Q, Li C. J. Mol. Catal. A Chem., 2009, 298 (1/2): 31-35
[59] Shylesh S, Schweizer J, Demeshko S, Schünemann V, Ernst S, Thiel W R. Adv. Synth. Catal., 2009, 351 (11/12): 1789-1795
[60] Kawamura M, Sato K. Chem. Commun., 2006, (45): 4718-4719
[61] Izatt R M, Pawlak K, Bradshaw J S, Bruening R L. Chem. Rev., 1995, 95 (7): 2529-2586
[62] Kawamura M, Sato K. Chem. Commun., 2007, (32): 3404-3405
[63] Neatu F, Kraynov A, D'Souza L, Parvulescu V I, Kranjc K, Kocevar M, Kuncser V, Richards R. Appl. Catal. A-Gen., 2008, 346 (1/2): 28-35
[64] Panella B, Vargas A, Baiker A. J. Catal., 2009, 261 (1): 88-93
[65] Lee D, Lee J, Lee H, Jin S, Hyeon T, Kim B M. Adv. Synth. Catal., 2006, 348 (1/2): 41-46
[66] Zheng X X, Luo S Z, Zhang L, Cheng J P. Green Chem., 2009, 11 (4): 455-458
[67] Dálaigh C , Corr S A, Gun'ko Y, Connon S J. Angew. Chem., 2007, 119 (23): 4407-4410
[68] Chen H T, Huh S, Wiench J W, Pruski M, Lin V S Y. J. Am. Chem. Soc., 2005, 127 (38): 13305-13311
[69] Gill C S, Price B A, Jones C W. J. Catal., 2007, 251 (1): 145-152
[70] Phan N T S, Jones C W. J. Mol. Catal. A Chem., 2006, 253 (1/2): 123-131
[71] Bass J D, Anderson S L, Katz A. Angew. Chem., 2003, 115 (42): 5377-5380
[72] Yoon H, Ko S, Jang J. Chem. Commun., 2007, (14): 1468-1470
[73] Ko S, Jang J. Angew. Chem., 2006, 118 (45): 7726-7729
[74] Tsang S C, Caps V, Paraskevas I, Chadwick D, Thompsett D. Angew. Chem., 2004, 116 (42): 5763-5767
[75] Schätz A, Grass R N, Stark W J, Reiser O. Chem. Eur. J., 2008, 14 (27): 8262-8266
[76] Stein M, Wieland J, Steurer P, Tölle F, Mülhaupt R, Breit B. Adv. Synth. Catal., 2011, 353 (4): 523-527
[77] Lu A H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F. Angew. Chem., 2004, 116 (33): 4403-4406
[78] Aschwanden L, Panella B, Rossbach P, Keller B, Baiker A. ChemCatChem, 2009, 1 (1): 111-115
[79] Mori K, Kanai S, Hara T, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K. Chem. Mater., 2007, 19 (6): 1249-1256
[80] Hara T, Kaneta T, Mori K, Mitsudome T, Mizugaki T, Ebitani K, Kaneda K. Green Chem., 2007, 9 (11): 1246-1251
[81] Zhang Y, Zhao Y W, Xia C G. J. Mol. Catal. A Chem., 2009, 306 (1/2): 107-112
[82] Kwon M S, Park I S, Jang J S, Lee J S, Park J. Org. Lett., 2007, 9 (17): 3417-3419
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[4] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[5] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[6] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[7] 王刚, 陈金伟, 朱世富, 张洁, 刘效疆, 王瑞林. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
[8] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[9] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[10] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[11] 侯晨, 朱浩, 李亦婧, 李彦锋*. 固定化脯氨酸及其衍生物用于催化不对称有机合成[J]. 化学进展, 2012, (9): 1729-1741.
[12] 王志会*, 王晓. 氮杂吲哚合成[J]. 化学进展, 2012, (10): 1974-1982.
[13] 沈金海, 程国林, 崔秀灵*. 基于钯催化C-H键活化的多米诺反应[J]. 化学进展, 2012, 24(07): 1324-1336.
[14] 包春燕*, 贾慧娟, 刘涛, 汪奕, 彭伟, 朱麟勇. 双分子层膜人工离子通道的合成[J]. 化学进展, 2012, 24(07): 1337-1345.
[15] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.