English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

过渡金属重卡拜的合成、结构与反应性

吴限   

  1. Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
  • 收稿日期:2011-06-01 修回日期:2011-08-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 吴限 E-mail:xiawu@tu-braunschweig.de

Heavier Homologues of Transition Metal Carbynes: Syntheses, Structures and Reactivity

Wu Xian   

  1. Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
  • Received:2011-06-01 Revised:2011-08-01 Online:2012-03-24 Published:2011-11-25
过渡金属硅卡拜、锗卡拜、锡卡拜和铅卡拜是过渡金属分别与硅、锗、锡和铅之间形成三键的化合物。自从1996年首次发现钼锗卡拜以来,相继得到了一系列过渡金属锗卡拜、锡卡拜和铅卡拜化合物,而首例过渡金属硅卡拜则于2010年得以成功制备,标志着过渡金属与第14族元素之间形成三键的空白被全部填满。这些化合物的出现大大丰富和完善了过渡金属主族元素化学在成键、结构和反应方面的内容,引起化学界的重视。本文结合这方面最新的实验研究进展,系统全面总结了这些化合物的合成、结构和反应性,并对该领域的发展前景作了讨论。
Transition metal silylynes, germylynes, stannylynes and plumbylynes containing metal-element triple bonds are heavier homologues of transition metal carbynes. Since the discovery of the first transition metal germylyne complex in 1996, the whole series have been synthesized including the successful preparation of a molybdenum silylyne complex in 2010, which could be considered as a milestone in the transition metal chemistry of main group elements. These novel complexes have extended our knowledge of the bonding types between transition metals and main group elements and reveal the rich chemistry of metal-element triple bonds. This review covers the syntheses, structures and reactivity of transition metal germylynes, stannylynes, plumbylynes and silylynes which were reported from 1996 to present. Future developments in this area are discussed. Contents
1 Introduction
2 Syntheses and structures
2.1 Transition metal germylynes
2.2 Transition metal stannylynes
2.3 Transition metal plumbylynes
2.4 Transition metal silylynes
3 Reactivity
3.1 Substitution reactions
3.2 Addition reactions
3.3 Coupling reactions
4 Conclusions and outlook

中图分类号: 

()
[1] Fischer H, Hofmann H, Kreissl F R, Schrock R R, Schubert U, Weiss K. Carbyne Complexes. Weinheim-New York: VCH Publishers, 1988
[2] Nugent W A, Mayer J M. Metal-Ligand Multiple Bonds. New York: John Wiley & Sons, 1988
[3] Astruc D. Organometallic Chemistry and Catalysis. Berlin-Heidelberg: Springer-Verlag, 2007. 215
[4] Riedel E, Ed. Moderne Anorganische Chemie. 3. Aufl. Berlin-New York: Walter de Gruyter, 2007. 685-686
[5] Jutzi P. Angew. Chem. Int. Ed., 2000, 39: 3797-3800
[6] Balázs G, Gregoriades L J, Scheer M. Organometallics, 2007, 26: 3058-3075
[7] Gerdes C, Müller T. Angew. Chem. Int. Ed., 2010, 49: 4860-4862
[8] Pandey K K, Lein M, Frenking G. J. Am. Chem. Soc., 2003, 125: 1660-1668
[9] Pandey K K, Lledós A. Inorg. Chem., 2009, 48: 2748-2759
[10] Simons R S, Power P P. J. Am. Chem. Soc., 1996, 118: 11966-11967
[11] Simons R S, Pu L, Olmstead M M, Power P P. Organometallics, 1997, 16: 1920-1925
[12] Pu L, Twamley B, Haubrich S T, Olmstead M M, Mork B V, Simons R S, Power P P. J. Am. Chem. Soc., 2000, 122: 650-656
[13] Pu L, Olmstead M M, Power P P, Schiemenz B. Organometallics, 1998, 17: 5602-5606
[14] Filippou A C, Philippopoulos A I, Portius P, Neumann D U. Angew. Chem. Int. Ed., 2000, 39: 2778-2781
[15] Kohl F X, Jutzi P. J. Organomet. Chem., 1983, 243: 31-34
[16] Jutzi P, Kohl F, Hofmann P, Krüger C, Tsay Y H. Chem. Ber., 1980, 113: 757-769
[17] Winter J G, Portius P, Kociok-Köhn G, Steck R, Filippou A C. Organometallics, 1998, 17: 4176-4182
[18] Filippou A C, Portius P, Philippopoulos A I. Organometallics, 2002, 21: 653-661
[19] Filippou A C, Schnakenburg G, Philippopoulos A I, Weidemann N. Angew. Chem. Int. Ed., 2005, 44: 5979-5985
[20] Filippou A C, Weidemann N, Philippopoulos A I, Schnakenburg G. Angew. Chem. Int. Ed., 2006, 45: 5987-5991
[21] Filippou A C, Portius P, Philippopoulos A I, Rohde H. Angew. Chem. Int. Ed., 2003, 42: 445-447
[22] Filippou A C, Philippopoulos A I, Schnakenburg G. Organometallics, 2003, 22: 3339-3341
[23] Rohde H. Dissertation of University of Bonn, Germany, 2007
[24] Rohde H, Menzel M, Renz F, Filippou A C. Hyperfine Interact, 2008, 185: 129-132
[25] Filippou A C, Rohde H, Schnakenburg G. Angew. Chem. Int. Ed., 2004, 43: 2243-2247
[26] Pu L, Twamley B, Power P P. Organometallics, 2000, 19: 2874-2881
[27] Filippou A C, Weidemann N, Schnakenburg G. Rohde H, Philippopoulos A I. Angew. Chem. Int. Ed., 2004, 43: 6512-6516
[28] Filippou A C, Weidemann N, Schnakenburg G. Angew. Chem. Int. Ed., 2008, 47: 5799-5802
[29] Grumbine S D, Chadha R K, Tilley T D. J. Am. Chem. Soc., 1992, 114: 1518-1520
[30] Hostetler M J, Nuzzo R G, Girolami G S. J. Am. Chem. Soc., 1994, 116: 11608-11609
[31] Mork B V, Tilley T D. Angew. Chem. Int. Ed., 2003, 42: 357-360
[32] Wang X, Andrews L. J. Am. Chem. Soc., 2008, 130: 6766-6773
[33] Filippou A C, Chernov O, Stumpf K W, Schnakenburg G. Angew. Chem. Int. Ed., 2010, 49: 3290-3300
[34] Filippou A C, Chernov O, Blom B, Stumpf K W, Schnakenburg G. Chem. Eur. J., 2010, 16: 2866-2872
[35] Filippou A C, Philippopoulos A I, Portius P, Schnakenburg G. Organometallics, 2004, 23: 4503-4512
[36] Filippou A C, Chernov O, Schnakenburg G. Angew. Chem. Int. Ed., 2011, 50: 1122-1126
[37] Schrock R R, Hoveyda A H. Angew. Chem. Int. Ed., 2003, 42: 4592-4633
[38] Fürstner A, Davis P. Chem. Commun., 2005, 2307-2320
[39] Mortreux A, Coutelier O. J. Mol. Catal. A: Chem., 2006, 254: 96-104
[40] Zhang W, Moore J S. Adv. Synth. Catal., 2007, 349: 93-120
[41] Schrock R R, Czekelius C. Adv. Synth. Catal., 2007, 349: 55-77
[42] Tamm M, Wu X. Chemistry Today (Chimica Oggi), 2010, 28: 60-63
[43] Wu X, Tamm M. Beilstein J. Org. Chem., 2011, 7: 82-93
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[5] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[6] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[7] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[8] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[9] 陈磊, 赵文, 易刚吉, 周建军, 袁爱华. 3d过渡金属单离子磁体[J]. 化学进展, 2019, 31(2/3): 337-350.
[10] 池晓汪, 吴群燕, 于吉攀, 张覃, 柴之芳, 石伟群. 锕系异核双金属化合物[J]. 化学进展, 2019, 31(10): 1341-1349.
[11] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[12] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[13] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[14] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[15] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.