English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

稀土上转换发光纳米材料的应用

刘涛, 孙丽宁*, 刘政, 仇衍楠, 施利毅*   

  1. 上海大学纳米科学与技术研究中心 上海 200444
  • 收稿日期:2011-06-01 修回日期:2011-11-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 孙丽宁, 施利毅 E-mail:lnsun@shu.edu.cn; shiliyi@shu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21001072)、上海市教育委员会重点学科建设项目(No.J50102)、上海市科委项目(No.1052nm03400)、上海大学创新基金(No.A.10-0110-09-906)、稀土资源利用国家重点实验室开放课题(No.RERU2011012)和发光与光信息技术教育部重点实验室研究基金课题(No.2010LOI09)资助

Rare-Earth Upconversion Nanophosphors

Liu Tao, Sun Lining*, Liu Zheng, Qiu Yannan, Shi Liyi*   

  1. Research Center of Nano Science & Technology, Shanghai University, Shanghai 200444, China
  • Received:2011-06-01 Revised:2011-11-01 Online:2012-03-24 Published:2011-11-25
稀土上转换发光纳米材料(简称UCNPs)不仅光稳定性强、发射带窄、荧光寿命长、化学稳定性高、潜在生物毒性低,而且采用近红外连续激发光源激发还使其具有较大的光穿透深度、无光闪烁和光漂白、无生物组织自发荧光以及对生物组织几乎无损伤等显著优点,已经成为当前很多领域乃至交叉科学的应用研究热点。由于氟化物基质的UCNPs具有较高的发光效率,本文首先归纳总结了近年来氟化物UCNPs的主要合成及表面改性方法,然后重点综述了近年来UCNPs在免疫分析及生物传感、生物成像、载药、光动力理疗及热致理疗、光导开关和信息存储以及太阳能电池等方面的研究与应用进展。
Rare-earth upconversion nanophosphors (UCNPs) have attracted significant attention benefited from their unique properties, such as strong photostability, narrow emission band, long fluorescent lifetime, high chemical stability, and low potential cytotoxicity, etc. Furthermore, being photoexcitable via continuous near infrared (NIR) radiation renders them superior performances, such as great light penetration depth, absence of photobleaching and photoblinking, lack of tissue autofluorescence, and less harmful to biological specimens. Recently, startling research interests have been ascribed to UCNPs, especially fluoride hosts-based UCNPs which are most efficient known to date, among various even interdisciplinary sciences field. Herein, recent synthesis and surface modification methodologies are outlined and summarized. Then the latest advances on research and applications of UCNPs are highlighted and reviewed, including immunoassay, bioimaging, drug delivery, photodynamic therapy, photothermal therapy, light induced switching, data storage, and solar cells, etc. Contents
1 Introduction
2 Synthesis methods of UCNPs
3 Surface modifications of UCNPs
4 Application progresses of UCNPs
4.1 Biological applications of UCNPs
4.2 Non-biological applications of UCNPs
5 Conclusions and outlook

中图分类号: 

()
[1] Bünzli J C G. Chem. Rev., 2010, 110: 2729-2755
[2] Eliseeva S V, Bünzli J C G. Chem. Soc. Rev., 2010, 39: 189-227
[3] Auzel F. Chem. Rev., 2004, 104: 139-173
[4] Wang F, Liu X G. Chem. Soc. Rev., 2009, 38: 976-989
[5] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G. Analyst,2010, 135: 1839-1854
[6] Haase M, Schäfer H. Angew. Chem. Int. Ed., 2011, 50: 5808-5829
[7] Sivakumar S, Diamente P R,van Veggel F C J M. Chem. Eur. J., 2006, 12: 5878-5884
[8] Yi G S,Chow G M. J. Mater. Chem., 2005, 15: 4460-4464
[9] Yi G S, Lu H C, Zhao S Y, Yue G, Yang W J, Chen D P, Guo L H. Nano Lett., 2004, 4: 2191-2196
[10] Li Z Q, Zhang Y, Jiang S. Adv. Mater., 2008, 20: 4765-4769
[11] Li Z Q, Zhang Y. Angew. Chem. Int. Ed., 2006, 45: 7732-7735
[12] Aebischer A, Heer S, Biner D, Krämer K, Haase M, Güdel H U. Chem. Phys. Lett., 2005, 407: 124-128
[13] Wang X, Li Y D. Nature, 2005, 437: 121-124
[14] Wang L Y, Li Y D. Chem. Mater., 2007, 19: 727-734
[15] Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46: 7976-7979
[16] Wang G F, Peng Q, Li Y D. Chem. Eur. J., 2010, 16: 4923-4931
[17] Pedroni M, Piccinelli F, Passuello T, Giarola M, Mariotto G, Polizzi S, Bettinelli M, Speghini A. Nanoscale, 2011, 3: 1456-1460
[18] Wang G F, Peng Q, Li Y D. J. Am. Chem. Soc., 2009, 131: 14200-14201
[19] Wang Y, Cai R, Liu Z. CrystEngComm, 2011, 13: 1772-1774
[20] Chen Z, Tian Q, Song Y, Yang J, Hu J. J. Alloys Compd., 2010, 506: L17-L21
[21] Barrera E W, Pujol M C, Díaz F, Choi S B, Rotermund F, Park K H, Jeong M S, Cascales C. Nanotechnology, 2011, 22: 075205-075219
[22] Yang D M,Kang X J, Shang M M, Li G G, Peng C, Li C X, Lin J. Nanoscale, 2011, 3: 2589-2595
[23] Shan J N, Ju Y G. Nanotechnology, 2009, 20: 275603-275615
[24] Mishra S, Daniele S, Ledoux G, Jeanneau E, Joubert M F. Chem. Commun., 2010, 3657-3658
[25] Yin A X, Zhang Y W, Sun L D, Yan C H. Nanoscale, 2010, 2: 953-959
[26] Du Y P, Zhang Y W, Sun L D, Yan C H. Dalton Trans., 2009, 40: 8574-8581
[27] Mahalingam V,Vetrone F, Naccache R, Speghini A, Capobianco J A. J. Mater. Chem., 2009, 19: 3149-3152
[28] Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco J A. Adv. Mater., 2009, 21: 4025-4028
[29] Yang D M,Li C X, Li G G, Shang M M, Kang X J, Lin J. J. Mater. Chem., 2011, 21: 5923-5927
[30] Venkatramu V, Falcomer D, Speghini A, Bettinelli M, Jayasankar C K. J. Lumin., 2008, 128: 811-813
[31] Lim S F, Riehn R, Tung C K, Ryu W S, Zhuo R, Dalland J, Austin R H. Nanotechnology, 2009, 20: 405701-405706
[32] Luo X X, Cao W H. J. Alloys Compd., 2008, 460: 529-534
[33] Xu L L, Yu Y N, Li X G, Somesfalean G, Zhang Y G, Gao H, Zhang Z G. Opt. Mater., 2008, 30: 1284-1288
[34] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121-124
[35] Zhang F, Li J, Shan J, Xu L, Zhao D Y. Chem. Eur. J., 2009, 15: 11010-11019
[36] Li C X, Yang J, Quan Z W, Yang P P, Kong D Y, Lin J. Chem. Mater., 2007, 19: 4933-4922
[37] Li C X, Yang J, Yang P P, Lian H Z, Lin J. Chem. Mater., 2008, 20: 4317-4326
[38] Li C X, Yang J, Yang P P, Zhang X M, Lian H Z, Lin J. Cryst. Growth Des., 2008, 8: 923-929
[39] Li C X, Quan Z W, Yang J, Yang P P, Lin J. Inorg. Chem., 2007, 46: 6329-6337
[40] Li C X, Quan Z W, Yang P P, Huang S, Lian H Z,Lin J. J. Phys. Chem. C, 2008, 112: 13395-13404
[41] Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J. J. Phys. Chem. C, 2008, 112: 2904-2910
[42] Li C X, Quan Z W, Yang P P, Yang J, Lian H Z, Lin J. J. Mater. Chem., 2008, 18: 1353-1361
[43] Wu Y, Li C X, Yang D M, Lin J. J. Colloid Interface Sci., 2011, 354: 429-436
[44] Zhang Q, Yan B. Chem. Commun., 2011, 5867-5869
[45] Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H. J. Am. Chem. Soc., 2006, 128: 6426-6436
[46] Zhang Y W, Sun X, Si R, You L P, Yan C H. J. Am. Chem. Soc., 2005, 127: 3260-3261
[47] Si R, Zhang Y W, You L P, Yan C H. Angew. Chem. Int. Ed., 2005, 44: 3256-3260
[48] Zhang C, Chen J, Zhou Y C, Li D Q. J. Phys. Chem. C, 2008, 112: 10083-10088
[49] Chen C, Sun L D, Li Z X, Li L L, Zhang J, Zhang Y W, Yan C H. Langmuir, 2010, 26: 8797-8803
[50] Liu X M, Zhao J W, Sun Y J, Song K, Yu Y, Du C A, Kong X G, Zhang H. Chem. Commun., 2009, 6628-6630
[51] Zhang C, Chen J. Chem. Commun., 2010, 592-594
[52] Chen X, Wang W J, Chen X Y, Bi J H, Wu L, Li Z H, Fu X Z. Mater. Lett., 2009, 63: 1023-1026
[53] Zhang L, Zhu Y J. J. Inorg. Mater., 2009, 24: 553-558
[54] Wang H Q, Nann T. ACS Nano, 2009, 3: 3804-3808
[55] Ma L, Chen W X, Zheng Y F, Zhao J, Xu Z D. Mater. Lett., 2007, 61: 2765-2768
[56] Xu Z H, Li C X, Yang P P, Zhang C M, Huang S S, Lin J. Cryst. Growth Des., 2009, 9: 4752-4758
[57] Zhang F, Zhao D Y. ACS Nano, 2009, 3: 159-164
[58] Xu Z H, Li C X, Cheng Z Y, Zhang C M, Li G G, Peng C, Lin J. CrystEngComm, 2010, 12: 549-557
[59] Feng W, Sun L D, Yan C H. Langmuir, 2011, 27: 3343-3347
[60] 杜海燕(Du H Y), 杨志萍(Yang Z P),孙家跃(Sun J Y). 化工新型材料(New Chemical Materials), 2009, 37(9), 5-8
[61] Li C X, Lin J. J. Mater. Chem., 2010, 20: 6831-6847
[62] Yu X F, Li M, Xie M Y, Chen L D, Li Y, Wang Q Y. Nano Res., 2010, 3: 51-60
[63] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463: 1061-1065
[64] Chen D Q, Yu Y L, Huang F, Huang P, Yang A P, Wang Y S. J. Am. Chem. Soc., 2010, 132: 9976-9978
[65] Chen D Q, Yu Y L, Huang F, Wang Y S. Chem. Commun., 2011, 2601-2603
[66] Chen D Q, Huang P, Yu Y L, Huang F, Yang A P, Wang Y S. Chem. Commun., 2011, 5801-5803
[67] Binnemans K. Chem. Rev., 2009, 109: 4283-4374
[68] Liu S H, Han M Y. Chem. Asian J., 2010, 5: 36-45
[69] Li Z, Wang L, Wang Z, Liu X, Xiong Y. J. Phys. Chem. C, 2011, 115: 3291-3296
[70] Wang M, Mi C C, Zhang Y X, Liu J L, Li F, Mao C B, Xu S K. J. Phys. Chem. C, 2009, 113: 19021-19027
[71] Yu X F, Chen L D, Li M, Xie M Y, Zhou L, Li Y, Wang Q Q. Adv. Mater., 2008, 20: 4118-4123
[72] Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K. ACS Nano, 2009, 3: 1580-1586
[73] Gai S L, Yang P P, Li C X, Wang W X, Dai Y L, Niu N, Lin J. Adv. Funct. Mater., 2010, 20: 1166-1172
[74] Johnson N J J, Sangeetha N M, Boyer J C, van Veggel F C J M. Nanoscale, 2010, 2: 771-777
[75] Zhang F, Braun G B, Shi Y F, Zhang Y C, Sun X H, Reich N O, Zhao D Y, Stucky G. J. Am. Chem. Soc., 2010,132: 2850-2851
[76] Xu Z H, Li C X, Ma P A, Hou Z Y, Yang D M, Kang X J, Lin J. Nanoscale, 2011, 3: 661-667
[77] Hu H, Xiong L Q, Zhou J, Li F Y, Cao T Y, Huang C H. Chem. Eur. J., 2009, 15: 3577-3584
[78] Yi G S, Chow G M. Chem. Mater., 2007, 19: 341-343
[79] Wang F, Chatterjee D K, Li Z Q, Zhang Y, Fan X P, Wang M Q. Nanotechnology, 2006, 17: 5786-5791
[80] Rantanen T, Järvenpää M L, Vuojola J, Kuningas K, Soukka T. Angew. Chem. Int. Ed., 2008, 47: 3811-3813
[81] Wang L Y, Yan R X, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2005, 44: 6054-6057
[82] Zhou J, Yao L M, Li C Y, Li F Y. J. Mater. Chem., 2010, 20: 8078-8085
[83] Cao T Y, Yang T S, Gao Y, Yang Y, Hu H, Li F Y. Inorg. Chem. Commun., 2010, 13: 392-394
[84] Cao T Y, Yang Y, Gao Y, Zhou J, Li Z Q, Li F Y. Biomaterials, 2011, 32: 2959-2968
[85] Hatakeyama M, Kishi H, Kita Y, Imai K, Nishio K, Karasawa S, Masaike Y, Sakamoto S, Sandhu A, Tanimoto A, Gomi T, Kohda E, Abe M, Handa H. J. Mater. Chem., 2011, 21: 5959-5966
[86] Shen J, Sun L D, Zhang Y W, Yan C H. Chem. Commun., 2010, 5731-5733
[87] Zhou H P, Xu C H, Sun W, Yan C H. Adv. Funct. Mater., 2009, 19: 3892-3900
[88] Hu H, Yu M X, Li F Y, Chen Z G, Gao X, Xiong L Q, Huang C H. Chem. Mater., 2008, 20: 7003-7009
[89] Chen Z G, Chen H L, Hu H, Yu M X, Li F Y, Zhang Q, Zhou Z G, Yi T, Huang C H. J. Am. Chem. Soc., 2008, 130: 3023-3029
[90] Mai H X, Zhang Y W, Sun L D, Yan C H. J. Phys. Chem. C, 2007, 111: 13721-13729
[91] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L P, Song H W. J. Mater. Chem., 2011, 21: 6193-6200
[92] Chen G Y, Ohulchanskyy T Y, Law W C, gren H, Prasad P N. Nanoscale, 2011, 3: 2003-2008
[93] Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A. Adv. Funct. Mater., 2009, 19: 2924-2929
[94] Qian H S, Zhang Y. Langmuir, 2008, 24: 12123-12125
[95] Abel K A, Boyer J C, van Veggel F C J M. J. Am. Chem. Soc., 2009, 131: 14644-14645
[96] Xia A, Gao Y, Zhou J, Li C X, Yang T S, Wu D M, Wu L M, Li F Y. Biomaterials, 2011, 32: 7200-7208
[97] Hou Z Y, Li C X, Ma P A, Li G G, Cheng Z Y, Peng C, Yang D M, Yang P P, Lin J. Adv. Funct. Mater., 2011, 21: 2356-2365
[98] Xu Z H, Ma P A, Li C X, Hou Z Y, Zhai X F, Huang S S, Lin J. Biomaterials, 2011, 32: 4161-4173
[99] Shan J N, Ju Y G. Appl. Phys. Lett., 2007, 91: 123103-123105
[100] Johnson N J J, Sangeetha N M, Boyer J C, van Veggel F C J M. Nanoscale, 2010, 2: 771-777
[101] Mi C C, Zhang J P, Gao H Y, Wu X L, Wang M, Wu Y F, Di Y Q, Xu Z G, Mao C B, Xu S K. Nanoscale, 2010, 2: 1141-1148
[102] Liu Q, Li C Y, Yang T S, Yi T, Li F Y. Chem. Commun. 2010, 5551-5553
[103] Wang M, Liu J L, Zhang Y X, Hou W, Wu X L, Xu S K. Mater. Lett., 2009, 63: 325-327
[104] Bogdan N, Vetrone F, Ozin G A, Capobianco J A. Nano Lett., 2011, 11: 835-840
[105] 陈敏(Chen M),熊丽琴(Xiong L Q),李富友(Li F Y). 生物物理学报(Acta Biophysica Sinica), 2010,26(8): 702-710
[106] 陈志钢(Chen Z G), 宋岳林(Song Y L), 田启威(Tian Q W), 胡俊青(Hu J Q), 李富友(Li F Y). 现代化工(Modern Chemical Industry), 2010, 30(7): 27-33
[107] Liu C H, Wang Z, Jia H X, Li Z P. Chem. Commun., 2011, 4661-4663
[108] Jiang S, Zhang Y. Langmuir, 2010, 26: 6689-6694
[109] Wang M, Hong W, Mi C C, Wang W X, Xu Z R, Teng H H, Mao C B, Xu S K. Anal. Chem., 2009, 81: 8783-8789
[110] Sun L N, Peng H, Stich M I J, Achatz D, Wolfbeis O S. Chem. Commun., 2009, 5000-5002
[111] Martin R R, Valiente R, Rodriguez F, Piccinelli F, Speghini A, Bettinelli M. Phys. Rev. B, 2010, 82: 735-744
[112] Kumar M, Zhang P. Biosens. Bioelectron., 2010, 25: 2431-2435
[113] Mader H S, Wolfbeis O S. Anal. Chem., 2010, 82: 5002-5004
[114] Xiong L Q, Chen Z G, Yu M X, Li F Y, Liu C, Huang C H. Biomaterials, 2009, 30: 5592-5600
[115] Yu M X, Li F Y, Chen Z G, Hu H, Zhan C, Yang H, Huang C. Anal. Chem., 2009, 81: 930-935
[116] Xiong L Q, Chen Z G, Tian Q W, Cao T Y, Xu C J, Li F Y. Anal. Chem., 2009, 81: 8687-8694
[117] Xiong L Q, Yang T S, Yang Y, Xu C J, Li F Y. Biomaterials, 2010, 31: 7078-7085
[118] Zhou J, Sun Y, Du X X, Xiong L Q, Hu H, Li F Y. Biomaterials, 2010, 31: 3287-3295
[119] Sun Y, Yu M Y, Liang S, Zhang Y J, Li C G, Mou T T, Yang W J, Zhang X Z, Li B, Huang C H, Li F Y. Biomaterials, 2011, 32: 2999-3007
[120] Liu Q, Sun Y, Li C G, Zhou J, Li C Y, Yang T S, Zhang X Z, Yi T, Wu D M, Li F Y. ACS Nano, 2011, 5: 3146-3157
[121] Zhou J, Yu M X, Sun Y, Zhang X Z, Zhu X J, Wu Z H, Wu D M, Li F Y. Biomaterials, 2011, 32: 1148-1156
[122] Vetrone F, Naccache R, de la Fuente A J, Sanz-Rodriguez F, Blazquez-Castro A, Rodriguez E M, Jaque D, Sole J G, Capobianco J A. Nanoscale, 2010, 2: 495-498
[123] Bogdan N, Vetrone F, Roy R, Capobianco J A. J. Mater. Chem., 2010, 20: 7543-7550
[124] Boyer J C, Vetrone F, Cuccia L A, Capobianco J A. J. Am. Chem. Soc., 2006, 128: 7444-7445
[125] Johnson N J J, Sangeetha N M, Boyer J C, van Veggel F C J M. Nanoscale, 2010, 2: 771-777
[126] Boyer J C, van Veggel F C J M. Nanoscale, 2010, 2: 1417-1419
[127] Boyer J C, Manseau M P, Murray J I, van Veggel F C J M. Langmuir, 2010, 26: 1157-1164
[128] Pichaandi J, van Veggel F C J M, Raudsepp M. ACS Appl. Mat. Interfaces, 2009, 2: 157-164
[129] Boyer J C, Manseau M P, Murray J I, van Veggel F C J M. Langmuir, 2009, 26: 1157-1164
[130] Boyer J C, Johnson N J J, van Veggel F C J M. Chem. Mater., 2009, 21: 2010-2012
[131] Abel K A, Boyer J C, van Veggel F C J M. J. Am. Chem. Soc., 2009, 131: 14644-14645
[132] Dong C, van Veggel F C J M. ACS Nano, 2008, 3: 123-130
[133] Park Y I, Kim J H, Lee K T, Jeon K S, Na H B, Yu J H, Kim H M, Lee N, Choi S H, Baik S I, Kim H, Park S P, Park B J, Kim Y W, Lee S H, Yoon S Y, Song I C, Moon W K, Suh Y D, Hyeon T W. Adv. Mater., 2009, 21: 4467-4471
[134] Nyk M, Rajiv K, Ohulchanskyy T Y, Bergey E J B, Prasad P N. Nano Lett., 2008, 8: 3834-3838
[135] Chen G Y, Ohulchanskyy T Y, Kumar R, gren H, Prasad P N. ACS Nano, 2010, 4: 3163-3168
[136] Guo H C, Idris N M, Zhang Y. Langmuir, 2011, 27: 2854-2860
[137] Ong L C, Gnanasammandhan M K, Nagarajan S, Zhang Y. Luminescence, 2010, 25: 290-293
[138] Nagarajan S, Li Z Q, Marchi-Artzner V, Grasset F, Zhang Y. Med. Biol. Eng. Comput., 2010, 48: 1033-1041
[139] Li Z Q, Zhang Y. Nanoscale, 2010, 2: 1240-1243
[140] Guo H C, Qian H S, Idris N M, Zhang Y. Nanomed. Nanotechnol. Biol. Med., 2010, 6: 486-495
[141] Qian H S, Guo H C, Ho P C L, Mahendran R, Zhang Y. Small, 2009, 5: 2285-2290
[142] Li Z Q, Zhang, Y, Shuter B, Idris N M. Langmuir, 2009, 25: 12015-12018
[143] Jiang S, Zhang Y, Lim K M, Sim E K W, Ye L. Nanotechnology, 2009, 20: 155101-155109
[144] Jiang S, Gnanasammandhan M K, Zhang Y. J. R. Soc. Interface, 2009, 7: 3-18
[145] Idris N M, Li Z Q, Ye L, Sim E K W, Mahendran R, Ho P C L, Zhang Y. Biomaterials, 2009, 30: 5104-5113
[146] Qian H S, Li Z Q, Zhang Y. Nanotechnology, 2008, 19: 255601-255604
[147] Li Z Q, Zhang Y. Nanotechnology, 2008, 19: 345606-345610
[148] Chatterjee D K, Fong L S, Zhang Y. Adv. Drug Delivery Rev., 2008, 60: 1627-1637
[149] Chatterjee D K, Rufaihah A, Zhang Y. Biomaterials, 2008, 29: 937-943
[150] Jalil A R, Zhang Y. Biomaterials, 2008, 29: 4122-4128
[151] Zhang Y, Lu M H. Nanotechnology, 2007, 18: 275603-275605
[152] Wang F, Fan X M, Wang M Q, Zhang Y. Nanotechnology, 2007, 18: 025701-025705
[153] Wang F, Chatterjee D K, Li Z Q, Zhang Y, Fan X M, Wang M Q. Nanotechnology, 2006, 17: 5786-5791
[154] Chen J, Guo C R, Wang M, Huang L, Wang P L, Mi C C, Li J, Fang X X, Mao C B, Xu S K. J. Mater. Chem., 2011, 21: 2632-2638
[155] Wang J, Wang F, Xu J, Wang Y, Liu Y S, Chen X Y, Chen H Y, Liu X G. C. R. Chimie., 2010, 13: 731-736
[156] Wang F, Wang J, Liu X G. Angew. Chem. Int. Ed., 2010, 49: 7456-7460
[157] Wang F, Liu X G. J. Am. Chem. Soc., 2008, 130: 5642-5643
[158] Liu Y S, Tu D T, Zhu H M, Li R F, Luo W Q, Chen X Y. Adv. Mater., 2010, 22: 3266-3271
[159] Tu D T, Liu L Q, Ju Q, Liu Y S, Zhu H M, Li R F, Chen X Y. Angew. Chem. Int. Ed., 2011, 50: 1-6
[160] Chen X, Wang W J, Chen X Y, Bi J H, Wu L, Li Z H, Fu X Z. Mater. Lett., 2009, 63: 1023-1026
[161] Das G K, Heng B C, Ng S C, White T, Loo J S C, Silva L D, Padmanabhan P, Bhakoo K K, Selvan S T, Tan T T Y. Langmuir, 2010, 26: 8959-8965
[162] Nam S H, Bae Y M, Park Y I, Kim J H, Kim H M, Choi J S, Lee K T, Hyeon T W, Suh Y D. Angew. Chem. Int. Ed., 2011, 123: 6617-6621
[163] Yang P P, Quan Z W, Hou Z Y, Li C X, Kang X J, Cheng Z Y, Lin J. Biomaterials, 2009, 30: 4786-4795
[164] Gai S L, Yang P P, Li C X, Wang W X, Dai Y L, Niu N, Lin J. Adv. Funct. Mater., 2010, 20: 1166-1172
[165] Wang C, Cheng L, Liu Z. Biomaterials, 2011, 32: 1110-1120
[166] Barreto J A, Malley O W, Kubeil M, Graham B, Stephan H, Spiccia L. Adv. Mater., 2011, 23: H18-H40
[167] Zhou Z G, Hu H, Yang H, Yi T, Huang K W, Yu M X, Li F Y, Huang C H. Chem. Commun., 2008, 4786-4788
[168] Zhang C, Zhou H P, Liao L Y, Feng W, Sun W, Li Z X, Xu C H, Fang C J, Sun L D, Zhang Y W, Yan C H. Adv. Mater., 2010, 22: 633-637
[169] Boyer J C, Carling C J, Gates B D, Branda N R. J. Am. Chem. Soc., 2010, 132: 15766-15772
[170] Zhang S Z, Sun L D, Tian H, Liu Y, Wang J F, Yan C H. Chem. Commun., 2009, 2547-2549
[171] Yan C L, Dadvand A, Rosei F, Perepichka D F. J. Am. Chem. Soc., 2010, 132: 8868-8867
[172] Chai R T, Lian H Z, Hou Z Y, Zhang C M, Peng C, Lin J. J. Phys. Chem. C, 2010, 114: 610-616
[173] Kim W J, Nyk M, Prasad P N. Nanotechnology, 2009, 20: 185301-185307
[174] Bünzli J C G, Eliseeva S V. Journal of Rare Earths, 2010, 28: 824-826
[175] Trupke T, Shalava A, Richards B S, Wurfel P, Greena M A. Solar Energy Materials & Solar Cells, 2006, 90: 3327-3338
[176] Ivanova S, Pellé F. J. Opt. Soc. Am. B, 2009, 26: 1930-1938
[177] Liao M, Qin G, Yan X, Hughes M, Suzuki T, Ohishi Y. J. Opt. Soc. Am. B, 2010, 27: 1352-1355
[178] Carlos L D, Ferreira R A S, de Zea Bermudez V, Julián-López B, Escribano P. Chem. Soc. Rev.,2011, 40: 536-549
[179] Zhang C,Sun L D, Zhang Y W, Yan C H. J. Rare Earth., 2010, 28: 807-819
[180] Louie A. Chem. Rev., 2010, 110, 50: 3149-3195
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 王阳, 胡珀, 周帅, 傅佳骏. 稀土上转换发光纳米材料的防伪安全应用[J]. 化学进展, 2021, 33(7): 1221-1237.
[9] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[10] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[11] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[12] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[13] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[14] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[15] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
阅读次数
全文


摘要

稀土上转换发光纳米材料的应用