English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

二维氧化钛纳米页

石建稳, 陈少华, 崔浩杰, 付明来*   

  1. 中国科学院城市环境研究所 城市环境与健康重点实验室 厦门 361021
  • 收稿日期:2011-07-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 付明来 E-mail:mlfu@iue.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.41001139),福建省自然科学基金项目(No.2010J05036,2009J05132)和高性能陶瓷和超微结构国家重点室开放课题基金(No.SKL20117SIC)资助

Two-Dimensional Titania Nanosheets

Shi Jianwen, Chen Shaohua, Cui Haojie, Fu Minglai*   

  1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received:2011-07-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
单层氧化钛纳米页(titania nanosheets)是一种厚度仅为0.7 nm的新型二维纳米材料,具有许多不同于块体氧化钛的优异性质,如:高各向异性、单晶性质、胶体和聚电解质特性、大比表面积、高表面能和量子尺寸效应等。在光电转换、磁光效应、高介电常数器件、电化学能量储存、湿敏传感器、自清洁和光催化等领域极具应用前景。本文首先总结了氧化钛纳米页的基本性能,如:光吸收性能、光致发光性能、光电化学性能、光诱导亲水性能和晶相转变温度差异等,概述了氧化钛纳米页的制备及组装方法,接着分别以薄膜片、纳米管、中空微球、超薄多层复合薄膜为代表,介绍了氧化钛纳米页组装得到的新型材料及其特点,然后介绍了氧化钛纳米页的掺杂改性,从拓宽光吸收带边、提高电子迁移速率和提高磁光效应三个角度,归纳总结了离子掺杂与氧化钛纳米页性能之间的关系,最后对氧化钛纳米页未来的研究发展趋势提出了展望。
Titania nanosheets is one kind of novel two-dimensional materials with single layer of 0.7 nm thickness, which endows it many special properties different from bulk titania, such as high anisotropy, single crystal property, colloid and polyelectrolyte properties, large specific surface area, high surface energy, quantum size effects, etc. Potential applications can be expected in photon-to-electron conversion, magnetooptical effects, high permittivity devices, electrochemical energy storage, humidity-sensitive sensors, self-cleaning and photocatalysis fields. In this review, the intrinsic properties of titania nanosheets, such as optical absorption, photoluminescence, photon-to-current conversion, photoinduced hydrophilicity and the difference of crystal transformation temperature, are summarized, and the preparation and assembly methods of titania nanosheets are introduced. Then, these new assembled materials and their properties are reviewed in detail by using thin flakes, nanotubes, hollow microspheres and complex films as representations. Afterwards, the modifications of titania nanosheets by doping with impurity ions are also introduced, and the relations between ions doing and properties of titania nanosheets are discussed from three aspects: extending the absorption edge of light, improving electron transfer rate and enhancing magnetooptical response. Finally, the future research trends of titania nanosheets are also suggested. Contents
1 Introduction
2 The properties of titania nanosheets
2.1 Optical absorption property
2.2 Photoluminescence property
2.3 Photon-to-current conversion property
2.4 Photoinduced hydrophilicity property
2.5 Crystal transformation temperature
3 Preparation of titania nanosheets
4 Assembly of titania nanosheets
5 New materials by assembling titania nanosheets
5.1 Thin flakes
5.2 Nanotubes
5.3 Hollow microspheres
5.4 Complex films
6 Modifications of titania nanosheets by doping
6.1 Extending the absorption edge of light
6.2 Improving electron transfer rate
6.3 Enhancing magnetooptical response
7 Conclusions and outlook

中图分类号: 

()
[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. PNAS, 2005, 102: 10451-10453
[2] Geim A K. Science, 2009, 324: 1530-1534
[3] Omomo Y, Sasaki T, Wang L, Watanabe M. J. Am. Chem. Soc., 2003, 125: 3568-3575
[4] Schaak R E, Mallouk T E. Chem. Mater., 2000, 12: 3427-3434
[5] Miyamoto N, Yamamoto H, Kaito R, Kuroda K. Chem. Commun., 2002, 2378-2379
[6] Sasaki T, Watanabe M. J. Phys. Chem. B, 1997, 101: 10159-10161
[7] Sasaki T, Watanabe M. J. Am. Chem. Soc., 1998, 120: 4682-4689
[8] Sasaki T, Ebina Y, Kitami Y, Watanabe M. J. Phys. Chem. B, 2001, 105: 6116-6121
[9] Wang Y, Sun C, Yan X, Xiu F, Wang L, Smith S C, Wang K L, Lu G Q, Zou J. J. Am. Chem. Soc., 2011, 133: 695-697
[10] Tanaka T, Ebina Y, Takada K, Kurashima K, Sasaki T. Chem. Mater., 2003, 15: 3564-3568
[11] Sakai N, Ebina Y, Takada K, Sasaki T. J. Am. Chem. Soc., 2004, 126: 5851-5858
[12] Osada M, Ebina Y, Takada K, Sasaki T. Adv. Mater., 2006, 18: 295-299
[13] Prato M. Nature, 2010, 465: 172-173
[14] Chen J S, Tang Y L, Li C M, Cheah Y L, Luan D, Madhavi S, Boey F Y C, Archer L A, Lou X W. J. Am. Chem. Soc., 2010, 132: 6124-6130
[15] Saruwatari K, Sato H, Kogure T, Wakayama T, Iitake M, Akatsuka K, Haga M, Sasaki T, Yamagishi A. Langmuir, 2006, 22: 10066-10071
[16] Sakai N, Fukuda K, Shibata T, Ebina Y, Takada K, Sasaki T. J. Phys. Chem. B, 2006, 110: 6198-6203
[17] Shibata T, Sakai N, Fukuda K, Ebina Y, Sasaki T. Phys. Chem. Chem. Phys., 2007, 9: 2413-2420
[18] Ohwada M, Kimoto K, Suenaga K, Sato Y, Ebina Y, Sasaki T. J. Physic. Chem. Lett., 2011, 2(14): 1820-1823
[19] 刘旸(Liu Y). 北京化工大学硕士论文(Masteral Dissertation of Beijing University of Chemical Technology), 2008
[20] Sasaki T, Ebina Y, Watanabe M, Decher G. Chem. Commun., 2000, 2163-2164
[21] Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431-432
[22] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Adv. Mater., 1998, 10: 135-138
[23] Sasaki T, Ebina Y, Fukuda K, Tanaka T, Harada M, Watanabe M. Chem. Mater., 2002, 14: 3524-3530
[24] Umemura Y, Koura A, Nishioka T, Tanaka D, Shinohara E, Suzuki T, Sasaki T. J. Phys. Chem. C, 2010, 114: 19697-19703
[25] Wang C C, Ying J Y. Chem. Mater., 1999, 11: 3113-3120
[26] Fukuda K, Sasaki T, Watanabe M, Nakai I, Inaba K, Omote K. Cryst. Growth Des., 2003, 3(3): 281-283
[27] Fukuda K, Ebina Y, Shibata T, Aizawa T, Nakai I, Sasaki T. J. Am. Chem. Soc., 2007, 129: 202-209
[28] Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H. J. Am. Chem. Soc., 1996, 118: 8329-8335
[29] Unal U, Matsumoto Y, Tanaka N, Kimura Y, Tamoto N. J. Phys. Chem. B, 2003, 107: 12680-12689
[30] Coleman J N, Lotya M, O'Neill, Bergin S D, King P J, Khan U, Young K, Gaucher A., De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331: 568-571
[31] Wu B, Guo C, Zheng N, Xie Z, Stucky G D. J. Am. Chem. Soc., 2008, 130: 17563-17567
[32] Fang M, Kaschak D M, Sutorik A C, Mallouk T E. J. Am. Chem. Soc., 1997, 119: 12184-12191
[33] Ida S, Ogata C, Shiga D, Izawa K, Ikeue K, Matsumoto Y. Angew. Chem. Int. Ed., 2008, 47: 2480-2483
[34] Choy J H, Lee H C, Jung H, Kim H, Boo H. Chem. Mater., 2002, 14: 2486-2491
[35] Xin H, Ebina Y, Ma R, Takada K, Sasaki T. J. Phys. Chem. B, 2006, 110: 9863-9868
[36] Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M. Chem. Mater., 2001, 13: 4661-4667
[37] Xue L, Kajiyoshi K, Yan Y. Thin Solid Films, 2009, 518: 10-15
[38] Sasaki T, Nakano S, Yamauchi S, Watanabe M. Chem. Mater., 1997, 9: 602-608
[39] Qian H, Greenhalgh E S, Shaffer M S P, Bismarck A. J. Mater. Chem., 2010, 20: 4751-4762
[40] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡伟民(Cai W M), 廖俊生(Liao J S). 化学进展(Progress in Chemistry), 2007, 19(1): 117-122
[41] 张文彦(Zhang W Y), 奚正平(Xi Z P), 李广忠(Li G Z), 李亚宁(Li Y N), 张健(Zhang J), 汤慧萍(Tang H P). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2009, 38(10): 1876-1880
[42] Yang L, Luo S, Cai Q, Yao S. Chinese Sci. Bull., 2010, 55(4/5): 331-338
[43] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 2904-2939
[44] Ma R, Bando Y, Sasaki T. J. Phys. Chem. B, 2004, 108: 2115-2119
[45] Iida M, Sasaki T, Watanabe M. Chem. Mater., 1998, 10: 3780-3782
[46] Wang L, Sasaki T, Ebina Y, Kurashima K, Watanabe M. Chem. Mater., 2002, 14: 4827-4832
[47] Wang L, Ebina Y, Takada K, Sasaki T. J. Phys. Chem. B, 2004, 108: 4283-4288
[48] Sakai N, Prasad G K, Ebina Y, Takada K, Sasaki T. Chem. Mater., 2006, 18: 3596-3598
[49] Decher G. Science, 1997, 277: 1232-1237
[50] Wang Z -S, Ebina Y, Takada K, Watanabe M, Sasaki T. Langmuir, 2003, 19: 9534-9537
[51] Yui T, Tsuchino T, Akatsuka K, Yamauchi A, Kobayashi Y, Hattori T, Haga M, Takagi K. Bull. Chem. Soc. Jpn., 2006, 79(3): 386-396
[52] Zhou Y, Ma R, Ebina Y, Takada K, Sasaki T. Chem. Mater., 2006, 18: 1235-1239
[53] Sakai N, Sasaki T, Matsubara K, Tatsuma T. J. Mater. Chem., 2010, 20: 4371-4378
[54] Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. J. Am. Chem. Soc., 2007, 129: 8000-8007
[55] Sakai N, Fukuda K, Omomo Y, Ebina Y, Takada K, Sasaki T. J. Phys. Chem. C, 2008, 112: 5197-5202
[56] Chen X, Mao S S. Chem. Rev., 2007, 107: 2891-2959
[57] 石建稳(Shi J W), 陈少华(Chen S H), 王淑梅(Wang S M), 罗红元(Luo H Y). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(2): 251-258
[58] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269-271
[59] Khan S U M, Al-Shahry M, Ingler W B. Science, 2002, 297: 2243-2245
[60] 栾勇(Luan Y), 傅平丰(Fu P F), 戴学刚(Dai X G), 杜竹玮(Du Z W). 化学进展(Progress in Chemistry), 2004, 16(5): 738-746
[61] 刘中清(Liu Z Q), 葛昌纯(Ge C C). 化学进展(Progress in Chemistry), 2006, 18(3): 168-175
[62] Harada M, Sasaki T, Ebina Y, Watanabe M. J. Photoch. Photobio. A, 2002, 148: 273-276
[63] Shi L, Gao Q, Wu Y, Chen Z, Liu A. Biosens. Bioelectron., 2009, 25: 948-951
[64] Dong X, Fu J, Xi F. J. Mater. Res., 2011, 26: 1285-1291
[65] Liu G, Wang L, Sun C, Chen Z, Yan X, Cheng L, Cheng H M, Lu G Q. Chem. Commun., 2009, 1383-1385
[66] Osada M, Ebina Y, Fukuda K, Ono K, Takada K, Yamaura K, Takayama-Muromachi E, Sasaki T. Phys. Rev. B, 2006, 73: art. no. 153301
[67] Osada M, Ebina Y, Takada K, Sasaki T. Key Eng. Mater., 2008, 388: 119-122
[68] Osada M, Itose M, Ebina Y, Ono K, Ueda S, Kobayashi K, Sasaki T. Appl. Phys. Lett., 2008, 92: art. no. 253110
[69] Dong X, Osada M, Ueda H, Ebina Y, Kotani Y, Ono K, Ueda S, Kobayashi K, Takada K, Sasaki T. Chem. Mater., 2009, 21: 4366-4373
[70] Hirai T, Suzuki K, Komasawa I. J. Colloid Interf. Sci., 2001, 244: 262-265
[71] Yan X, Liu G, Wang L, Wang Y, Zhu X, Zou J, Lu G Q. J. Mater. Res., 2010, 25: 182-188
[72] 肖信(Xiao X), 张伟德(Zhang W D). 化学进展(Progress in Chemistry), 2011, 23(4): 657-668
[1] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[2] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[3] 阙亚萍, 翁坚, 胡林华, 戴松元. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50.
[4] 王桂强, 段彦栋, 张娟, 林原, 禚淑萍. 染料敏化太阳能电池掺杂TiO2纳晶光阳极[J]. 化学进展, 2014, 26(07): 1255-1264.
[5] 毛峥伟, 张元洪, 李慧英, 仝维鋆, 高长有*. 功能微粒材料的制备及其细胞作用研究[J]. 化学进展, 2013, 25(07): 1061-1070.
[6] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[7] 王会香, 姜东, 吴东, 李德宝, 孙予罕 . TiO2光催化还原CO2[J]. 化学进展, 2012, 24(11): 2116-2123.
[8] 李晔飞, 刘智攀*. 固液界面光催化裂解水的理论进展[J]. 化学进展, 2012, 24(06): 957-963.
[9] 许宜铭. 环境污染物的光催化降解:活性物种与反应机理*[J]. 化学进展, 2009, 21(0203): 524-533.
[10] 赵丹,孙春燕,陈春城,马万红,赵进才. 新型污染物多溴联苯醚和氰尿酸的光化学降解*[J]. 化学进展, 2009, 21(0203): 400-405.
[11] 杨旭一,黄其煜. 有机电解液在阳极氧化法制备TiO2纳米管中的应用*[J]. 化学进展, 2009, 21(01): 116-120.
[12] 林华香,王绪绪,付贤智. TiO2表面羟基及其性质*[J]. 化学进展, 2007, 19(05): 665-670.
[13] 郑青,周保学,白晶,蔡伟民,廖俊生. TiO2纳米管阵列及其应用[J]. 化学进展, 2007, 19(01): 117-121.
[14] 王晓冬,金振声,张治军. 纳米管钛酸钠及其衍生物[J]. 化学进展, 2006, 18(09): 1208-1217.
[15] 刘中清,葛昌纯. 非金属改性可见光诱导的TiO2光催化[J]. 化学进展, 2006, 18(0203): 168-175.
阅读次数
全文


摘要

二维氧化钛纳米页