English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

分级结构纳米氧化铝的可控合成及应用

汤睿, 李平*   

  1. 华东理工大学化学工程联合国家重点实验室 上海 200237
  • 收稿日期:2011-07-01 修回日期:2011-11-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 李平 E-mail:lipingunilab@ecust.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2012CB720500)资助

Synthesis and Application of Hierarchically Structured Nano-Alumina

Tang Rui, Li Ping*   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2011-07-01 Revised:2011-11-01 Online:2012-03-24 Published:2011-11-25
分级结构纳米氧化铝由于具有微-纳米尺度的协同和偶合效应近年来受到广泛关注。本文将不同形态的分级结构分为空心球状结构、核壳结构、簇状结构和阵列结构4种一般类型,并综述了其合成进展。简要评述了合成过程中的影响因素及分级结构形成的机理,并概述了其热稳定性的相关研究,还列举了其在光学与催化等领域的应用。最后,从分级结构的形态和性质的可控合成与实际应用相结合的角度展望了未来的研究方向。
Nano-alumina with hierarchical structure has recently attracted extensive attention because of its synergism and coupling effect on micro-nano scales. In the paper, the hierarchical structures of nano-alumina reported in the literature have been divided into four main types including hollow sphere, core-shell, cluster, and array. The progress of their synthesis techniques has been reviewed. Several factors affecting the morphology of nano-alumina particles with hierarchical structure in the course of synthesis have been discussed. It has been recognized in the literature that a majority of effects could be altered if changing the synthesis environment, indicating the complexity of hierarchical structure formation. Nevertheless, there is a general rule for the effect of pH in the hydrothermal process on the morphology of the secondary structure of nano-alumina. Acid condition favors the formation of one dimensional nano-alumina while basic condition helps to form two dimensional nano-alumina. The formation mechanism of the hierarchically structured nano-alumina has briefly been explained. Additionally, the effect of hierarchical morphology on the thermal stability of alumina has been depicted using available results presented in the literature. Some examples of the material applied to the areas of luminescence, adsorption and catalysis have been given in the paper. As viewed from the combination of the rational synthesis and the practical applications of the material with specific properties, the prospects of the research on the hierarchically structured nano-alumina have been outlined in the end of the paper. Contents
1 Introduction
2 Synthesis of hierarchically structured nano-alumina with different morphologies
2.1 Hollow structure
2.2 Core-shell structure
2.3 Cluster structure
2.4 Array structure
2.5 Other structures
3 Synthesis factors and structure formation mechanism
3.1 Factors in morphology forming
3.2 Formation mechanism of hierarchical structure
4 Influence of hierarchical structure on material thermostability
5 Application of hierarchically structured nano-alumina
6 Prospects

中图分类号: 

()
[1] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59-61
[2] Buhro W E, Colvin V L. Nat. Mater., 2003, 2: 138-139
[3] Lu C H, Qi L M, Yang J H, Wang X Y, Zhang D Y, Xie J L, Ma J M. Adv. Mater., 2005, 17: 2562-2567
[4] Wang Z L, Song J H. Science, 2006, 312: 242-246
[5] Huang J Y, Wang X D, Wang Z L. Nano Lett., 2006, 6: 2325-2331
[6] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Adv. Mater., 2002, 14: 1857-1860
[7] Nudelman F, Gotliv B A, Addadi L, Weiner S. J. Struct. Biol., 2006, 153: 176-187
[8] Trueba M, Trasatti S P. Eur. J. Inorg. Chem., 2005, 17: 3393-3403
[9] Zhang Z R, Hicks R W, Pauly T R, Pinnavaia T J. J. Am. Chem. Soc., 2002, 124: 1592-1593
[10] Hu J S, Zhong L S, Song W G, Wang L J. Adv. Mater., 2008, 20: 2977-2982
[11] Yu P, Zhang X, Wang D L, Wang L, Ma Y W. Cryst. Growth Des., 2009, 9: 528-533
[12] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121-124
[13] Zhang D F, Zhang H, Guo L, Zheng K, Han X D, Zhang Z. J. Mater. Chem., 2009, 19: 5220-5225
[14] Yu J G, Yu H G, Guo H T, Li M, Mann S. Small, 2008, 4: 87-91
[15] Yu J G, Li Q L, Fan J J, Cheng B. Chem. Commun., 2011, 9161-9163
[16] Burda C, Chen X B, Narayanan R, Ei-Sayed M A. Chem. Rev., 2005, 105: 1025-1102
[17] 张东凤(Zhang D F), 牛丽亚(Niu Y L), 郭林(Guo L). 物理化学学报(Acta Phys. Chim. Sin. ), 2010, 26: 2865-2876
[18] Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108: 4935-4978
[19] Yang X Y, Li Y, Lemaire A, Yu J G, Su B L. Pure Appl. Chem., 2009, 81: 2265-2307
[20] Zhang M, Zhang R, Xi G C, Liu Y, Qian Y T. J. Nanosci. Nanotechnol., 2006, 6: 1437-1440
[21] Hu Y, Jiang X Q, Ding Y, Chen Q, Yang C Z. Adv. Mater., 2004, 16: 933-937
[22] Yin Y D, Rioux R M, Erdonmez C K. Science, 2004, 304: 711-714
[23] Liu Q, Liu H J, Han M, Zhu J M, Liang Y Y, Xu Z, Song Y. Adv. Mater., 2005, 17: 1995-1999
[24] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46: 1489-1492
[25] Buchold D H, Feldman C. Nano Lett., 2007, 7: 3489-3492
[26] 冯莹(Feng Y), 仉丽(Zhang L), 古国华(Gu G H), 胡正水(Hu Z S). 稀有金属材料与工程(Rare. Metal Mat. Eng.), 2007, 36: 134-136
[27] Wu X Y, Wang D B, Hu Z S, Gu G H. Mater. Chem. Phys., 2008, 109: 560-564
[28] Cai W Q, Yu J G, Cheng B, Su B L, Jaroniec M. J. Phys. Chem. C, 2009, 113: 14739-14746
[29] Cai W Q, Yu J G, Mann S. Micropro. Mesopro. Mat., 2009, 122: 42-47
[30] Cai W Q, Yu J G, Gu S H, Jaroniec M. Cryst. Growth Des., 2010, 10: 3977-3982
[31] Xiu F, Li W. Mater. Lett., 2010, 64: 1858-1860
[32] Zhou J B, Yang S L, Yu J G, Shu Z. J. Hazard. Mater., 2011, 192: 1114-1121
[33] Lee W R, Kim M G, Choi J R, Park J, Ko S J, Oh S J, Cheon J. J. Am. Chem. Soc., 2005, 127: 16090-16097
[34] 吕勇(Lv Y), 陆文聪(Lu W C), 张良苗(Zhang L M), 岳宝华(Yue B H), 尚兴付(Shang X F), 倪纪鹏(Ni J P). 无机化学学报(Acta Phys. Chim. Sin.), 2009, 25: 1391-1396
[35] Zhang L M, Lu W C, Yan L M, Feng Y L, Bao X H, Ni J P, Shang X F, Lv Y. Micropro. Mesopro. Mat., 2009, 119: 208-216
[36] Zhang L M, Lu W C, Cui R R, Shen S S. Mater. Res. Bull., 2010, 45: 429-436
[37] 吴秀勇(Wu X Y), 胡正水(Hu Z S). 无机化学学报(Chinese J. Inorg. Chem.), 2008, 24: 760-764
[38] Wang Y Q, Wang G Z, Wang H Q, Cai W P, Liang C H, Zhang L D. Nanotechnol., 2009, 20: art. no. 155604
[39] Kou H M, Wang J, Pan Y B, Guo J K. J. Am. Ceram. Soc., 2005, 88: 1615-1618
[40] Kou H M, Pan Y B, Guo J K. Ceram. Int., 2007, 33: 305-308
[41] Chen X Y, Huh H S, Lee S W. Nanotechnol., 2007, 18: art. no. 285608
[42] Liu Q, Wang A Q, Wang X D, Zhang T. Micropro. Mesopro. Mat., 2007, 100: 35-44
[43] Cai W Q, Yu J G, Jaroniec M. J. Mater. Chem., 2010, 20: 4587-4594
[44] 汤睿(Tang R), 张昭(Zhang Z), 杨晓娇(Yang X J), 王寅(Wang Y). 无机化学学报(Chinese J. Inorg. Chem. ), 2011, 27: 251-258
[45] Kim S W, Iwamoto S, Inoue M. Top Catal., 2010, 53: 535-542
[46] Kim S W, Iwamoto S, Inoue M. J. Porous. Mater., 2010, 17: 377-385
[47] Zhang J, Liu S J, Lin J, Song H S, Luo J J, Elssfah E M, Ammar E, Huang Y, Ding X X, Gao J M, Qi S R, Tang C C. J. Phys. Chem. B, 2006, 110: 14249-14252
[48] Ma M G, Zhu J F. Mater. Lett., 2009, 63: 881-883
[49] Li G C, Liu Y Q, Liu D, Liu L H, Liu C G. Mater. Res. Bull., 2010, 45: 1487-1491
[50] Zhang J, Wei S Y, Lin J, Luo J J, Liu S J, Song H S, Elawad E, Ding X X, Gao J M, Qi S R, Tang C C. J. Phys. Chem. B, 2006, 110: 21680-21683
[51] Feng Y L, Lu W C, Zhang L M, Bao X H, Yue B H, Lv Y, Shang X F. Cryst. Growth Des., 2008, 8: 1426-1429
[52] Liu Y, Li X M, Xu Z K, Hu Z S. J. Phys. Chem. Solids, 2010, 71: 206-209
[53] Liu Y, Ma D, Han X W, Bao X H, Frandsn W, Wang D, Su D S. Mater. Lett., 2008, 62: 1297-1301
[54] Kim T, Li H B, Lian J B, Jin H H, Ma J M, Duan X C, Yao G, Zheng W J. Cryst. Res. Technol., 2010, 45: 767-770
[55] Kim T, Lian J B, Ma J M, Duang X C, Zheng W J. Cryst. Growth Des., 2010, 10: 2928-2933
[56] Liang H, Liu L, Yang Z J, Yang Y Z, Cryst. Res. Technol., 2010, 45: 195-198
[57] Wei S Y, Zhang J, Elsanousi A, Lin J, Shi F J, Liu S J, Ding X X, Gao J M, Qi S R, Tang C C. Nanotechnol., 2007, 18: art. no. 255605
[58] Zhang L, Zhu Y J. J. Phys. Chem. C, 2008, 112: 16764-16768
[59] Yu X X, Yu J G, Cheng B, Jaroniec M. J. Phys. Chem. C, 2009, 113: 17525-17535
[60] Yuan Z H, Huang H, Fan S S. Adv. Mater., 2002, 14: 303-306
[61] Xiao Z L, Han C Y, Welp U, Wang H H, Kwok W K, Willing G A, Hiller J M, Cook R E, Miller D J, Crabtree G W. Nano Lett., 2002, 2: 1293-1297
[62] Mei Y F, Wu X L, Shao X F, Huang G S, Siu G G. Phys. Lett. A, 2003, 309: 109-113
[63] Tian Y T, Meng G W, Gao T, Sun S H, Xie T, Peng X S, Ye C H, Zhang L D. Nanotechnol., 2004, 15: 189-191
[64] Zhang L, Cheng B, Shi W S, Samulski E T. J. Mater. Chem., 2005, 15: 4889-4893
[65] Li Y, Yang X Y, Tian G, Vantomme A, Yu J G, Tendeloo G, Su B L. Chem. Mater., 2010, 22: 3251-3258
[66] Yu J G, Su Y R, Cheng B. Adv. Funct. Mater., 2007, 17: 1984-1990
[67] Yu J G, Zhang L J, Cheng B, Su Y R. J. Phys. Chem. C, 2007, 111: 10582-10589
[68] Lemaire A, Su B L. Langmuir, 2010, 26: 17603-17616
[69] Lemaire A, Su B L. Micropro. Mesopro. Mat., 2011, 142: 70-81
[70] Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. J. Colloid Interf. Sci., 2011, 363: 511-520
[71] Yang X Y, Leonard A, Lemaire A, Tian G, Su B L. Chem. Commun., 2011, 2763-2786
[72] Kuang X, Carotenuto G, Nicolais L. Appl. Compos. Mater., 1995, 2: 245-255
[73] Kaya C, He J Y, Gu X, Butler E G. Micropro. Mesopro. Mat., 2002, 54: 37-49
[74] Chen X Y, Lee S W. Chem. Phys. Lett., 2007, 438: 279-284
[75] Chen X Y, Zhang Z J, Li X L, Lee S W. Solid. State. Comm., 2008, 145: 368-373
[76] He T B, Xiang L, Zhu S L. Cryst. Eng. Comm., 2009, 11: 1338-1342
[77] 陆光伟(Lu G W), 杨琪(Yang Q), 邓意达(Deng Y D), 胡文彬(Hu W B). 无机材料学报(J. Inorg. Mater. ). 2009, 24: 463-468
[78] Deng Y D, Yang Q, Lu G W, Deng Y D. Ceram. Int., 2010, 36: 1773-1777
[79] Yang Q. Inorg. Mater., 2010, 46: 953-958
[80] Tang B, Ge J C, Zhou L H, Wang G L, Niu J Y, Shi Z Q, Dong Y B. Eur. J. Inorg. Chem., 2005: 4366-4369
[81] Zhao Y Y, Frost R L, Martens W N, Zhu H Y. Langmuir, 2007, 23: 9850-9859
[82] Li Y Y, Liu J P, Jia Z J. Mater. Lett., 2006, 60: 3586-3590
[83] Hou H W, Xie Y, Yang Q, Guo Q, Tan C. Nanotechnol., 2005, 16: 741-745
[84] Mathieu Y, Lebeau B, Valtchev V. Langmuir, 2007, 23: 9435-9442
[85] Bokhimi X, Valente J S, Pedraza F. J. Solid. State. Chem., 2002, 166: 182-190
[86] Gan Z H, Ning G L, Lin Y, Cong Y. Mater. Lett., 2007, 61: 3758-3761
[87] Ma M G, Zhu Y J, Xu Z L. Mater. Lett., 2007, 61: 1812-1815
[88] Ma M G, Zhu Y J, Cheng G F, Huang Y H. J. Mater. Sci. Technol., 2008, 24: 637-640
[89] Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad S K. J. Alloy. Compd., 2008, 461: 551-554
[90] Mekasuwandumrong O, Tantichuwet P, Chaisuk C, Praserthdam P. Mater. Chem. Phys., 2008, 107: 208-214
[91] 李传润(Li C R), 冯乙巳(Feng Y S), 杨庆华(Yang Q H), 化学进展(Prog. Chem.), 2006, 18: 1482-1488
[92] 杨泠(Yang L), 冯炫(Feng X), 刘应亮(Liu Y L), 化学进展(Prog. Chem.), 2010, 22: 32-43
[93] Zhang Z R, Hicks R W, Pauly T R, Pinnavaia T J. J. Am. Chem. Soc., 2002, 124: 1592-1593
[94] Shen S C, Ng W K, Zhong Z Y, Dong Y C, Chia L, Tan R B. J. Am. Ceram. Soc., 2009, 92: 1311-1316
[95] Naskar M K. J. Am. Ceram. Soc., 2009, 92: 2392-2395
[96] Zhu Z F, Sun H J, Liu H, Yang D. Mater. Sci., 2010, 45: 46-50
[97] Zhu Z F, Sun H J, Liu H, Yang D. Chem. Eng. J., 2009, 155: 925-930
[98] Ying Z S, Gevert B, Otterstedt J E, Sterte J. Appl. Catal. A-Gen., 1997, 153: 69-82
[99] Martinez A, Prieto G, Rollan J. J. Catal., 2009, 263: 292-305
[100] Lu C L, Lv J G, Xu L, Guo X F, Hou W H, Hu Y, Huang H. Nanotechnol., 2009, 20: art. no. 215604
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[10] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[11] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[12] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[13] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[14] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[15] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.