English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

多孔碳材料的制备

吴雪艳1, 王开学2*, 陈接胜2   

  1. 1. 上海交通大学材料科学与工程学院 上海 200240;
    2. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2011-07-01 修回日期:2011-10-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 王开学 E-mail:k.wang@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金主任基金项目(No.21151002),国家自然科学基金青年科学基金项目(No.20901050)和上海市浦江人才计划项目(No.09PJ1405700)资助

Preparation of Porous Carbon Materials

Wu Xueyan1, Wang Kaixue2*, Chen Jiesheng2   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2011-07-01 Revised:2011-10-01 Online:2012-03-24 Published:2011-11-25
多孔碳材料不仅具有碳材料化学稳定高、导电性好等优点,由于多孔结构的引入,还具有比表面积高、孔道结构丰富、孔径可调等特点,在催化、吸附和电化学储能等方面都得到了广泛的应用。本文综述了微孔、介孔、大孔及多级孔碳等多孔碳材料的最新研究进展,重点介绍了多孔碳孔道结构的调控,并对多孔碳材料的应用进行了展望。
Porous carbon with large specific surface area, tunable porous structure, high stability and good electron conductivity, has attracted considerable attention due to its promising applications in the fields of catalyst, catalyst support, absorption and electrochemical energy storage. This manuscript reviews recent development in the fabrication of microporous carbon, mesoporous carbon, macroporous carbon and hierarchically porous carbon with both ordered and disordered porous structures. The so-called soft- and hard-template methods are efficient in tuning the porous structures and morphologies of carbon materials. The potential applications of porous carbon materials are also highlighted in this review. Contents
1 Introduction
2 Microporous carbon materials
2.1 Disordered microporous carbon materials
2.2 Ordered microporous carbon materials
3 Mesoporous carbon materials
3.1 Disordered mesoporous carbon materials
3.2 Ordered mesoporous carbon materials
3.3 Morphology control
4 Macroporous carbon materials
5 Hierarchical porous carbon materials
6 Conclusion and outlook

中图分类号: 

()
[1] Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18 (16): 2073-2094
[2] Jimenez-Cruz F, Hernandez J A, Laredo G C, Mares-Gallardo M T, Garcia-Gutierrez J L. Energy Fuels, 2007, 21 (5): 2929-2934
[3] Xu B, Wu F, Chen S, Cao G P, Zhou Z M. Colloid Surf. A-Physicochem. Eng. Asp., 2008, 316 (1/3): 85-88
[4] Xu B, Hou S S, Chu M, Cao G P, Yang Y S. Carbon, 2010, 48 (10): 2812-2814
[5] Yao J F, Wang H T, Liu J, Chan K Y, Zhang L X, Xu N P. Carbon, 2005, 43 (8): 1709-1715
[6] Katsaros F K, Steriotis T A, Romanos G E, Konstantakou M, Stubos A K, Kanellopoulos N K. Microporous Mesoporous Mater., 2007, 99 (1/2): 181-189
[7] Nishiyama N, Dong Y R, Zheng T, Egashira Y, Ueyama K. J. Membrane Sci., 2006, 280 (1/2): 603-609
[8] Dong Y R, Nakao M, Nishiyama N, Egashira Y, Ueyama K. Sep. Purif. Technol., 2010, 73 (1): 2-7
[9] Nakagawa H, Watanabe K, Harada Y, Miura K. Carbon, 1999, 37 (9): 1455-1461
[10] Saufi S M, Ismail A F. Carbon, 2004, 42 (2): 241-259
[11] Zhou W L, Yoshino M, Kita H, Okamoto K. J. Membrane Sci., 2003, 217 (1/2): 55-67
[12] Centeno T A, Fuertes A B. Sep. Purif. Technol., 2001, 25 (1/3): 379-384
[13] Fuertes A B, Menendez I. Sep. Purif. Technol., 2002, 28 (1): 29-41
[14] Tanaka S, Yasuda T, Katayama Y, Miyake Y. J. Membrane Sci., 2011, 379 (1/2): 52-59
[15] Radhakrishnan L, Reboul J, Furukawa S, Srinivasu P, Kitagawa S, Yamauchi Y. Chem. Mater., 2011, 23 (5): 1225-1231
[16] Su F B, Poh C K, Chen J S, Xu G W, Wang D, Li Q, Lin J Y, Lou X W. Energy Environ. Sci., 2011, 4 (3): 717-724
[17] Paraknowitsch J P, Thomas A, Schmidt J. Chem. Commun., 2011, 8283-8285
[18] McNicholas T P, Wang A M, O'Neill K, Anderson R J, Stadie N P, Kleinhammes A, Parilla P, Simpson L, Ahn C C, Wang Y Q, Wu Y, Liu J. J. Phys. Chem. C, 2010, 114 (32): 13902-13908
[19] Centeno T A, Vilas J L, Fuertes A B. J. Membrane Sci., 2004, 228 (1): 45-54
[20] Zhang F, Ma H, Chen J, Li G D, Zhang Y, Chen J S. Bioresour. Technol., 2008, 99 (11): 4803-4808
[21] Zhang F, Li G D, Chen J S. J. Colloid Interface Sci., 2008, 327 (1): 108-114
[22] Zhang F, Wang K X, Li G D, Chen J S. Electrochem. Commun., 2009, 11 (1): 130-133
[23] Zhang Y, Zhang F, Li G D, Chen J S. Mater. Lett., 2007, 61 (30): 5209-5212
[24] Azevedo D C S, Araujo J C S, Bastos-Neto M, Torres A E B, Jaguarible E F, Cavalcante C L. Microporous Mesoporous Mater., 2007, 100 (1/3): 361-364
[25] Su W, Zhou L, Zhou Y P. Chin. J. Chem. Eng., 2006, 14 (2): 266-269
[26] Aroua M K, Daud W, Yin C Y, Adinata D. Sep. Purif. Technol., 2008, 62 (3): 609-613
[27] Nieto-Delgado C, Terrones M, Rangel-Mendez J R. Biomass Bioenerg., 2011, 35 (1): 103-112
[28] Kyotani T, Nagai T, Inoue S, Tomita A. Chem. Mater., 1997, 9 (2): 609-615
[29] Mokaya R, Xia Y D, Walker G S, Grant D M. J. Am. Chem. Soc., 2009, 131 (45): 16493-16499
[30] Xia Y D, Mokaya R, Walker G S, Zhu Y Q. Adv. Energy Mater., 2011, 1 (4): 678-683
[31] Walker G S, Xia Y D, Mokaya R, Grant D M. Carbon, 2011, 49 (3): 844-853
[32] Johnson S A, Brigham E S, Ollivier P J, Mallouk T E. Chem. Mater., 1997, 9 (11): 2448-2458
[33] Ma Z X, Kyotani T, Tomita A. Chem. Commun., 2000, 2365-2366
[34] Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A. Chem. Mater., 2001, 13 (12): 4413-4415
[35] Kyotani T, Ma Z X, Tomita A. Carbon, 2003, 41 (7): 1451-1459
[36] Hou P X, Orikasa H, Yamazaki T, Matsuoka K, Tomita A, Setoyama N, Fukushima Y, Kyotani T. Chem. Mater., 2005, 17 (20): 5187-5193
[37] Lee J, Kim J, Lee Y, Yoon S, Oh S M, Hyeon T. Chem. Mater., 2004, 16 (17): 3323-3330
[38] Pang J B, Ford C, Tan G, McPherson G, John V T, Lu Y F. Microporous Mesoporous Mater., 2005, 85 (3): 293-296
[39] Kim J, Lee J, Hyeon T. Carbon, 2004, 42 (12/13): 2711-2719
[40] Ford C, Singh M, Lawson L, He J B, John V, Lu Y F, Papadopoulos K, McPherson G, Bose A. Colloid Surface B, 2004, 39 (3): 143-150
[41] Coutinho D, Gorman B, Ferraris J P, Yang D J, Balkus K J. Microporous Mesoporous Mater., 2006, 91 (1/3): 276-285
[42] Pang J B, John V T, Loy D A, Yang Z Z, Lu Y F. Adv. Mater., 2005, 17 (6): 704-707
[43] Yang Z X, Xia Y D, Mokaya R. J. Mater. Chem., 2006, 16 (33): 3417-3425
[44] Liu C, Tang Z G, Chen Y, Su S J, Jiang W J. Bioresour. Technol., 2010, 101 (3): 1097-1101
[45] Long D H, Zhang R, Qiao W M, Zhang L, Liang X Y, Ling L C. J. Colloid Interface Sci., 2009, 331 (1): 40-46
[46] Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Yoshida S, Iizuka T. Carbon, 1997, 35 (7): 1031-1033
[47] Lukens W W, Stucky G D. Chem. Mater., 2002, 14 (4): 1665-1670
[48] Mui E L K, Cheung W H, Valix M, McKay G. Microporous Mesoporous Mater., 2010, 130 (1/3): 287-294
[49] Job N, Thery A, Pirard R, Marien J, Kocon L, Rouzaud J N, Beguin F, Pirard J P. Carbon, 2005, 43 (12): 2481-2494
[50] Han S J, Sohn K, Hyeon T. Chem. Mater., 2000, 12 (11): 3337-3341
[51] Lei Z B, Xiao Y, Dang L Q, Lu M, You W S. Microporous Mesoporous Mater., 2006, 96 (1/3): 127-134
[52] Lei Z B, Xiao Y, Dang L Q, Bai S Y, An L Z. Microporous Mesoporous Mater., 2008, 109 (1/3): 109-117
[53] Li Z J, Jaroniec M. Chem. Mater., 2003, 15 (6): 1327-1333
[54] Hu Q Y, Lu Y F, Meisner G P. J. Phys. Chem. C, 2008, 112 (5): 1516-1523
[55] Jaroniec M, Choma J, Gorka J, Zawislak A. Chem. Mater., 2008, 20 (3): 1069-1075
[56] Calvillo L, Moliner R, Lazaro M J. Mater. Chem. Phys., 2009, 118 (1): 249-253
[57] Han S J, Hyeon T. Chem. Commun., 1999, 1955-1956
[58] Fuertes A B. Chem. Mater., 2004, 16 (3): 449-455
[59] Li Z J, Jaroniec M. J. Phys. Chem. B, 2004, 108 (3): 824-826
[60] Li Z J, Jaroniec M. J. Am. Chem. Soc., 2001, 123 (37): 9208-9209
[61] Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Chem. Commun., 1999, 2177-2178
[62] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103 (37): 7743-7746
[63] Fuertes A B. J. Mater. Chem., 2003, 13 (12): 3085-3088
[64] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J. Am. Chem. Soc., 2000, 122 (43): 10712-10713
[65] Lu A H, Kiefer A, Schmidt W, Schuth F. Chem. Mater., 2004, 16 (1): 100-103
[66] Fuertes A B. Microporous Mesoporous Mater., 2004, 67 (2/3): 273-281
[67] Lee J, Yoon S, Oh S M, Shin C H, Hyeon T. Adv. Mater., 2000, 12 (5): 359-362
[68] Kim S S, Pinnavaia T J. Chem. Commun., 2001, 2418-2419
[69] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Nature, 2001, 412 (6843): 169-172
[70] Solovyov L A, Kim T W, Kleitz F, Terasaki O, Ryoo R. Chem. Mater., 2004, 16 (11): 2274-2281
[71] Kruk M, Jaroniec M, Kim T W, Ryoo R. Chem. Mater., 2003, 15 (14): 2815-2823
[72] Darmstadt H, Roy C, Kaliaguine S, Kim T W, Ryoo R. Chem. Mater., 2003, 15 (17): 3300-3307
[73] Che S A, Lund K, Tatsumi T, Iijima S, Joo S H, Ryoo R, Terasaki O. Angew. Chem. Int. Ed., 2003, 42 (19): 2182-2185
[74] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43 (43): 5785-5789
[75] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128 (16): 5316-5317
[76] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, 2125-2127
[77] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18 (18): 4447-4464
[78] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44 (43): 7053-7059
[79] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. J. Am. Chem. Soc., 2005, 127 (39): 13508-13509
[80] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46 (7): 1089-1093
[81] Zhang F Q, Meng Y, Gu D, Yan Y, Chen Z X, Tu B, Zhao D Y. Chem. Mater., 2006, 18 (22): 5279-5288
[82] Deng Y H, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L J, Huang Y, Liu C, Wu X J, Zhao D Y. J. Am. Chem. Soc., 2007, 129 (6): 1690-1697
[83] Deng Y H, Cai Y, Sun Z K, Gu D, Wei J, Li W, Guo X H, Yang J P, Zhao D Y. Adv. Funct. Mater., 2010, 20 (21): 3658-3665
[84] Fulvio P F, Mayes R T, Wang X Q, Mahurin S M, Bauer J C, Presser V, McDonough J, Gogotsi Y, Dai S. Adv. Funct. Mater., 2011, 21 (12): 2208-2215
[85] Tanaka S, Katayama Y, Tate M P, Hillhouse H W, Miyake Y. J. Mater. Chem., 2007, 17 (34): 3639-3645
[86] Wang X Q, Zhu Q, Mahurin S M, Liang C D, Dai S. Carbon, 2010, 48 (2): 557-560
[87] Song L Y, Feng D, Fredin N J, Yager K G, Jones R L, Wu Q Y, Zhao D Y, Vogt B D. ACS Nano, 2010, 4 (1): 189-198
[88] Pang J B, Li X, Wang D H, Wu Z W, John V T, Yang Z Z, Lu Y F. Adv. Mater., 2004, 16 (11): 884-886
[89] Chen B C, Lin H P, Chao M C, Mou C Y, Tang C Y. Adv. Mater., 2004, 16 (18): 1657-1661
[90] Yu C Z, Fan J, Tian B Z, Zhao D Y, Stucky G D. Adv. Mater., 2002, 14 (23): 1742-1745
[91] Cott D J, Petkov N, Morris M A, Platschek B, Bein T, Holmes J D. J. Am. Chem. Soc., 2006, 128 (12): 3920-3921
[92] Wang K, Zhang W, Phelan R, Morris M A, Holmes J D. J. Am. Chem. Soc., 2007, 129 (44): 13388-13389
[93] Wang K X, Birjukovs P, Erts D, Phelan R, Morris M A, Zhou H S, Holmes J D. J. Mater. Chem., 2009, 19 (9): 1331-1338
[94] Zhao G W, He J P, Zhang C X, Zhou J H, Chen X, Wang T. J. Phys. Chem. C, 2008, 112 (4): 1028-1033
[95] Chen J T, Shin K, Leiston-Belanger J M, Zhang M F, Russell T P. Adv. Funct. Mater., 2006, 16 (11): 1476-1480
[96] Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. J. Mater. Chem., 2010, 20 (20): 4223-4230
[97] Xia Y D, Mokaya R. Adv. Mater., 2004, 16 (11): 886-891
[98] Xia Y D, Yang Z X, Mokaya R. J. Phys. Chem. B, 2004, 108 (50): 19293-19298
[99] Kim M, Yoon S B, Sohn K, Kim J Y, Shin C H, Hyeon T, Yu J S. Microporous Mesoporous Mater., 2003, 63 (1/3): 1-9
[100] Valle-Vigon P, Sevilla M, Fuertes A B. Chem. Mater., 2010, 22 (8): 2526-2533
[101] Guo L M, Zhang L X, Zhang J M, Zhou J, He Q J, Zeng S Z, Cui X Z, Shi J L. Chem. Commun., 2009, 6071-6073
[102] Yan Y, Zhang F Q, Meng Y, Tu B, Zhao D Y. Chem. Commun., 2007, 2867-2869
[103] Zhang F Q, Gu D, Yu T, Zhang F, Xie S H, Zhang L J, Deng Y H, Wan Y, Tu B, Zhao D Y. J. Am. Chem. Soc., 2007, 129 (25): 7746-7747
[104] Gu D, Bongard H, Meng Y, Miyasaka K, Terasaki O, Zhang F Q, Deng Y H, Wu Z X, Feng D, Fang Y, Tu B, Schuth F, Zhao D Y. Chem. Mater., 2010, 22 (16): 4828-4833
[105] Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D Y. J. Am. Chem. Soc., 2002, 124 (17): 4556-4557
[106] Zakhidov A A, Baughman R H, Iqbal Z, Cui C X, Khayrullin I, Dantas S O, Marti I, Ralchenko V G. Science, 1998, 282 (5390): 897-901
[107] Kang S, Yu J S, Kruk M, Jaroniec M. Chem. Commun., 2002, 1670-1671
[108] Yu J S, Kang S, Yoon S B, Chai G. J. Am. Chem. Soc., 2002, 124 (32): 9382-9383
[109] Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. J. Phys. Chem. B, 2004, 108 (22): 7074-7079
[110] Yu J S, Yoon S B, Chai G S. Carbon, 2001, 39 (9): 1442-1446
[111] Lei Z B, Zhang Y G, Wang H, Ke Y X, Li J M, Li F Q, Xing J Y. J. Mater. Chem., 2001, 11 (8): 1975-1977
[112] Su F B, Zhao X S, Wang Y, Zeng J H, Zhou Z C, Lee J Y. J. Phys. Chem. B, 2005, 109(43): 20200-20206
[113] Chai G S, ShinI S, Yu J S. Adv. Mater., 2004, 16(22): 2057-2061
[114] Baumann T F, Satcher J H. Chem. Mater., 2003, 15(20): 3745-3747
[115] Adelhelm P, Hu Y S, Chuenchom L, Antonietti M, Smarsly B M, Maier J. Adv. Mater., 2007, 19(22): 4012-4017
[116] Lu A H, Smatt J H, Linden M. Adv. Funct. Mater., 2005, 15(5): 865-871
[117] Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Adv. Funct. Mater., 2007, 17(12): 1873-1878
[118] Li F J, Morris M, Chan K Y. J. Mater. Chem., 2011, 21(24): 8880-8886
[119] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L J, Wang C C, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19(13): 3271-3277
[120] Wang Z Y, Stein A. Chem. Mater., 2008, 20(3): 1029-1040
[121] Wang Z Y, Li F, Stein A. Nano Lett., 2007, 7(10): 3223-3226
[122] Stein A, Li F, Denny N R. Chem. Mater., 2008, 20(3): 649-666
[123] Li F, Wang Z Y, Stein A. Angew. Chem. Int. Ed., 2007, 46(11): 1885-1888
[124] Li F, Delo S A, Stein A. Angew. Chem. Int. Ed., 2007, 46(35): 6666-6669
[125] Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webley P A, Zhao D Y. Chem. Commun., 2008, 2641-2643
[126] Liu R L, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. J. Am. Chem. Soc., 2006, 128(35): 11652-11662
[127] Wang D W, Li F, Liu M, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2008, 47(2): 373-376
[128] Jiang Q W, Li G R, Wang F, Gao X P. Electrochem. Commun., 2010, 12(7): 924-927
[1] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[2] 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50.
[3] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[4] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
[5] 来庆学, 张校刚, 梁彦瑜. 离子液体为新型前驱体制备含氮碳纳米材料及其应用[J]. 化学进展, 2013, 25(10): 1703-1712.
[6] 刘栋, 唐成春, 薛彦明, 李杰. 新型多孔氮化硼材料[J]. 化学进展, 2013, 25(07): 1113-1121.
[7] 赖超, 李国春, 叶世海, 高学平. 高容量硫/碳复合正极材料[J]. 化学进展, 2011, 23(0203): 527-532.
[8] 王嬿嬿,马谆,范曲立,黄维. 苯炔体系大环合成、自组装及其应用*[J]. 化学进展, 2006, 18(0203): 281-289.
[9] 张作山,张树永,李文荣. 模板及其在纳米材料合成领域的应用[J]. 化学进展, 2004, 16(01): 26-.
[10] 马玉荣,齐利民,马季铭. 中孔氧化硅的超分子模板合成及其结构与形貌的调控*[J]. 化学进展, 2003, 15(06): 477-.
[11] 王荔军,郭中满,李铁津,李敏. 生物矿化纳米结构材料与植物硅营养[J]. 化学进展, 1999, 11(02): 119-.
阅读次数
全文


摘要

多孔碳材料的制备