English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

干胶法合成分子筛

杨娜1, 岳明波1,2, 王一萌1*   

  1. 1. 华东师范大学化学系 上海市绿色化学与化工过程绿色化重点实验室 上海 20006;
    2. 曲阜师范大学化学与化工学院 曲阜 273165
  • 收稿日期:2011-07-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 王一萌 E-mail:ymwang@chem.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20890124,21003083)和中国博士后科学基金项目(No.201004700766)资助

Synthesis of Zeolites by Dry Gel Conversion

Yang Na1, Yue Mingbo1,2, Wang Yimeng1*   

  1. 1. Shanghai Key Lab of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 20006;
    2. School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
  • Received:2011-07-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
相对于传统的水热合成法,干胶法(dry gel conversion,DGC)合成分子筛具有产量高、废液量少等优势。本文综述了近十年来DGC合成分子筛的研究进展。以水为线索,总结了外加水和固有水(指原料干胶所含的水)在DGC中对分子筛的生长、晶相的转换与物化性质的影响,论述了在DGC条件下分子筛的生长过程和晶化机理,介绍了DGC在介孔-微孔复合分子筛、分子筛膜、单块材料等新型分子筛材料合成中的一些实例。
Compared with traditional hydrothermal synthesis (HTS), dry gel conversion (DGC) synthesis of zeolites has the advantages of high yield, less waste, less usage of templates,etc. Firstly, this review summarized the developments in last decade and pivoted on the role of water. In typical DGC synthesis, the gel powder keeps intact with the liquid including liquid water. However, water could also be the vapor or those adsorbed/absorbed in gel powders. Therefore, both the water added and those included in gel powder may affect the nucleation, and growth of zeolite, phase selectivity and transformation, and the properties of obtained zeolite. It is believed that water has been the prerequisite for the transformation of zeolite from initial gel. And the required amount of water differs by structural properties of zeolite. Apart from water, other factors have been seen as contributing roles as well in the synthesis condition. Secondly, the difference between HTS and DGC is discussed. Thirdly, this review provided some insights into the formation mechanism of zeolite in DGC process, where nanoparticles and semi-crystalline intermediates play the role. Finally, this review illustrated the applications of DGC in the synthesis of hierarchical zeolite, zeolite film, zeolite monolith and others. Some advices about DGC used in the synthesis of these relatively new materials are concluded. Contents
1 Introduction
2 Definition of DGC
3 Factors in crystallization by DGC
3.1 Role of water
3.2 Other factors
4 Differences between HTS and DGC
5 Crystal growth and zeolite synthesis mechanism
6 Applications in fabrication of zeolite-like materials
6.1 Synthesis of hierarchical zeolite
6.2 Synthesis of zeolite monolith and other zeolite-like materials
7 Outlook

中图分类号: 

()
[1] Cundy C S, Cox P A. Micro. Meso. Mater., 2005, 82: 1-78
[2] Xu W, Dong J, Li J, Li J, Wu F. Chem. Commun., 1990, 755-756
[3] Matsukata M, Ogura M, Osaki T, Rao P, Nomura M, Kikuchi E. Top. Catal., 1999, 9: 77-92
[4] 姚建峰(Yao J F), 张利雄(Zhang L X), 徐南平(Xu N P). 南京工业大学学报(Journal of Nanjing University of Technology), 2004, 26: 103-109
[5] 任瑜(Ren Y), 董维阳(Dong W Y), 龙英才(Long Y C). 上海化工(Shanghai Chemical Industry), 2000, (20): 24-27
[6] Chen B H, Huang Y N. Micro. Meso. Mater., 2009, 123: 71-77
[7] Bandyopadhyay M, Bandyopadhyay R, Kubota Y, Sugi Y. Chem. Lett., 2000, 29: 1024-1025
[8] Bandyopadhyay R, Kubota Y, Sugi Y. Stud. Surf. Sci. Catal., 2002, 142: 15-22
[9] Niphadkar P S, Kotwa M S, Deshpande S S, Bokade V V, Joshi P N. Mater. Chem. Phys., 2009, 114: 344-349
[10] Hu D, Xia Q H, Lu X H, Luo X B, Liu Z M. Mater. Res. Bull., 2008, 43: 3553-3561
[11] Arnold A, Hunger M, Weitkamp J. Micro. Meso. Mater., 2004, 67: 205-213
[12] Bandyopadhyay R, Bandyopadhyay M, Kubota Y, Sugi Y. J. Porous Mater., 2002, 9: 83-95
[13] Saha S K, Waghmode S B, Kubota Y, Sugi Y. Mater. Lett., 2004, 58: 2918-2923
[14] Naik S P, Chiang A S T, Thompson R W. J. Phys. Chem. B, 2003, 107: 7006-7014
[15] Shu G, Liu J M, Chiang A S T, Thompson R W. Adv. Mater., 2006, 18: 185-189
[16] Chen B H, Huang Y N. J. Am. Chem. Soc., 2006, 128: 6437-6446
[17] Cundy C S, Cox P A. Chem. Rev., 2003, 103: 663-701
[18] Saha S K, Waghmode S B, Maekawa H, Kawase R, Komura K, Kubota Y, Sugi Y. Micro. Meso. Mater., 2005, 81: 277-287
[19] Goergen S, Guillon E, Patarin J, Rouleau L. Micro. Meso. Mater., 2009, 126: 283-290
[20] Ke X, Xu L, Zeng C, Zhang L, Xu N. Micro. Meso. Mater., 2007, 106: 68-75
[21] Matsukata M, Kizu K, Ogura M, Kikuchi E. Cryst. Growth Des., 2001, 1: 509-516
[22] Weitkamp J, Hunger M. Stud. Surf. Sci. Catal., 2005, 155: 1-12
[23] Goergen S, Saada M, Soulard M, Rouleau L, Patarin J. J. Porous Mater., 2010, 17: 635-641
[24] Shao H, Yao J, Ke X, Zhang L, Xu N. Mater. Res. Bull., 2009, 44: 956-959
[25] Alfaro S, Valenzuela M A, Bosch P. J. Porous Mater., 2009, 16: 337-342
[26] Hirota Y, Murata K, Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Mater. Chem. Phys., 123: 507-509
[27] Saha S K, Kubota Y, Sugi Y. Chem. Lett., 2003, 32: 1026-1027
[28] Khan N A, Park J H, Jhung S H. Mater. Res. Bull., 2010, 45: 377-381
[29] Trinh T T, Jansen A P J, van Santen R A, Meijer E J. J. Phys. Chem. C, 2009, 113: 2647-2652
[30] Trinh T T, Jansen A P J, van Santen R A, VandeVondele J, Meijer E J. ChemPhysChem, 2009, 10: 1775-1782
[31] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔化学(Molecular Sieve and Porous Material Chemistry). 北京: 科学出版社(Beijing: Science Press), 2004. 201
[32] Mora-Fonz M J, Catlow C R A, Lewis D W. Stud. Surf. Sci. Catal., 2005, 158: 295-302
[33] Mora-Fonz M J, Catlow C R A, Lewis D W. Phys. Chem. Chem. Phys., 2008, 10: 6571-6578
[34] Inagaki S, Nakatsuyama K, Kikuchi E, Ma-tsukata M. Bull. Chem. Soc. Jpn., 2010, 83: 69-74
[35] Inagaki S, Nakatsuyama K, Kikuchi E, Ma-tsukata M. Stud. Surf. Sci. Catal., 2005, 158: 343-350
[36] Chen B, Huang Y. J. Phys. Chem. C, 2007, 111: 15236-15243
[37] Chen B H, Kirby C W, Huang Y N. J. Phys. Chem. C, 2009, 113: 15868-15876
[38] Arnold A, Steuernagel S, Hunger M, Weitkamp J. Micro. Meso. Mater., 2003, 62: 97-106
[39] Matsukata M, Osaki T, Ogura M, Kikuchi E. Micro. Meso. Mater., 2002, 56: 1-10
[40] Terasaki O, Ohsuna T, Alfredsson V, Bovin J O, Watanabe D, Carr S W, Anderson M W. Chem. Mater., 1993, 5: 452-458
[41] Cheng X W, Wang J, Yu H, Guo J, He H Y, Long Y C. Micro. Meso. Mater., 2009, 118: 152-162
[42] Chou C, Cundy C S, Garforth A A. Stud. Surf. Sci. Catal., 2005, 156: 393-400
[43] Chou Y H, Cundy C S, Garforth A A, Zholobenko V L. Micro. Meso. Mater., 2006, 89: 78-87
[44] Egeblad K, Kustova M, Klitgaard S K, Zhu K, Christensen C H. Micro. Meso. Mater., 2007, 101: 214-223
[45] Fang Y, Hu H. J. Am. Chem. Soc., 2006, 128: 10636-10637
[46] Wang J, Vinu A, Coppens M O. J. Mater. Chem., 2007, 17: 4265-4273
[47] Zhou J, Hua Z L, Shi J L, He Q J, Guo L M, Ruan M L. Chem. Eur. J., 2009, 15: 12949-12954
[48] Koekkoek A J J, Degirmenci V, Hensen E J M. J. Mater. Chem., 2011, 21: 9279-9289
[49] Moller K, Yilmaz B, Jacubinas R M, Muller U, Bein T. J. Am. Chem. Soc., 2011, 133: 5284-5295
[50] Majano G, Mintova S, Ovsitser O, Mihailova B, Bein T. Micro. Meso. Mater., 2005, 80: 227-235
[51] Ke X, Zeng C, Yao J, Zhang L, Xu N. Mater. Lett., 2008, 62: 3316-3318
[52] Bhaumik A, Tatsumi T. Micro. Meso. Mater., 2000, 34: 1-7
[53] Lafjah M, Mansour R, Kadiri M. Bull. Catal. Soc. (India), 2007, 6: 34-41
[54] 赵阳(Zhao Y), 郑亚峰(Zhen Y F), 辛峰(Xin F). 化学反应与工程(Chemical Reaction Engineering and Technology), 2004, 20(4): 357-362
[55] Yang H F, Shi Q H, Tian B Z, Xie S H, Zhang F Q, Yan Y, Tu B, Zhao D Y. Chem. Mater., 2003, 15: 536-541
[56] Zhang F, Yan Y, Meng Y, Xia Y, Tu B, Zhao D. Micro. Meso. Mater., 2007, 98: 6-15
[57] Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Gao Z. Chem. Mater., 2002, 14: 3217-3219
[58] Alfaro S, Arruebo M, Coronas J, Menendez M, Santamaria J. Micro. Meso. Mater., 2001, 50: 195-200
[59] Wang Y J, Tang Y, Dong A G, Wang X D, Ren N, Shan W, Gao Z. Adv. Mater., 2002, 14: 994-997
[60] Lei Q, Zhao T B, Li F Y, Zhang L L, Wang Y. Chem. Commun., 2006, 1769-1771
[61] Zhao T B, Xu X, Tong Y C, Lei Q, Li F Y, Zhang L L. Catal. Lett., 2010, 136: 266-270
[62] Lei Q, Zhao T B, Li F Y, Wang Y F, Hou L L. J. Porous Mater., 2008, 15: 643-646
[63] Wang Y J, Tang Y, Dong A G, Wang X D, Ren N, Gao Z. J. Mater. Chem., 2002, 12: 1812-1818
[64] Yang H Q, Liu Z C, Gao H X, Xie Z K. J. Mater. Chem., 2010, 20: 3227-3231
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[7] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[8] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[9] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[10] 杨一舟, 彭兵权, 雷晓玲, 方海平. 离子溶液中的芳香环:反常化学计量比的二维晶体和其铁磁性[J]. 化学进展, 2022, 34(7): 1524-1536.
[11] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[12] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[13] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[14] 南明君, 乔琳, 刘玉琴, 张华民, 马相坤. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413.
[15] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
阅读次数
全文


摘要

干胶法合成分子筛