English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

燃料电池纳米催化剂的稳定化

陈维民1,2   

  1. 1. 沈阳理工大学环境与化学工程学院 沈阳 110159;
    2. 辽宁省特种储备电源工程技术研究中心 沈阳 110159
  • 收稿日期:2011-07-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 陈维民 E-mail:cwm222@163.com
  • 基金资助:

    辽宁省教育厅高校科研计划项目(No.2009B154)资助

Stabilization of Nanocatalysts in Fuel Cells

Chen Weimin1,2   

  1. 1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China;
    2. Liaoning Engineering Research Center of Special Reserve Powers, Shenyang 110159, China
  • Received:2011-07-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
低温燃料电池是理想的移动式电源,它所采用的电催化剂主要为Pt基贵金属纳米催化剂。提高纳米催化剂在电池内部环境中的稳定性、抑制其活性衰减,对于延长低温燃料电池的使用寿命和节约成本具有十分重要的意义。本文从三个方面综述了近年来在低温燃料电池纳米催化剂稳定化方面的研究进展。首先,通过载体效应实现催化剂的稳定化,包括碳载体的石墨化、碳载体的掺杂、表面功能化及其他载体的采用等。其次,通过空间效应实现催化剂的稳定化,包括催化剂粒子表面覆盖、催化剂粒子微孔嵌入、催化剂表面杂多酸单层自组装及聚合物电解质空间阻隔等。再其次,通过协同效应实现催化剂的稳定化,包括提升金属粒子的氧化电位、强化组分间的相互作用等。最后,对低温燃料电池纳米催化剂稳定化的发展前景进行了展望。
Low temperature fuel cells are considered to be promising portable power sources. Pt based noble metal nanocatalysts are widely used as electrocatalysts in low temperature fuel cells. The electrochemical stability of nanocatalysts is of significance for long-term operations of fuel cells. Unfortunately, Pt based nanocatalysts are unstable in fuel cells and tend to lose their activities gradually during long-term discharge processes. The activity losses of nanocatalysts are normally caused by nanoparticle agglomeration, metal dissolution, poisoning, support corrosion, etc. In order to extend the lifetime of fuel cells and save costs, the stability of nanocatalysts under internal environments of fuel cells should be improved. Recently, studies regarding the stabilization of Pt based nanocatalysts attracted much attention and various methods were developed to prevent the degradation of nanocatalysts. In this paper, recent research works about the stabilization of nanocatalysts in low temperature fuel cells are reviewed. Firstly, nanocatalysts are stabilized by support modifications, which include the graphitization of carbon supports, the doping of carbon supports, the surface functionalization of carbon supports and the use of other supports. Secondly, nanocatalysts are stabilized by steric effects, which are related to the surface covering of catalyst nanoparticles, the micro-pore enveloping of catalyst particles, the monolayer self-assembly of polyoxometallate on the catalyst surface and the steric obstruction of catalyst nanoparticles by polymer electrolytes. Thirdly, nanocatalysts are stabilized by synergetic effects, such as the elevation of metal oxidation potentials and the enhancement of the interaction between catalyst components. Finally, an outlook of the future development of the stabilization of nanocatalysts in low temperature fuel cells is provided. Contents
1 Introduction
2 Stabilization of catalysts by support modifications
2.1 Graphitization of carbon supports
2.2 Doping of carbon supports
2.3 Surface functionalization of carbon supports
2.4 Use of other supports
3 Stabilization of catalysts by steric effects
4 Stabilization of catalysts by synergetic effects
5 Conclusions and outlook

中图分类号: 

()
[1] Carrette L, Friedrich K A, Stimming U. ChemPhysChem, 2000, 1(4): 162-193
[2] 衣宝廉(Yi B L). 燃料电池--原理、技术、应用(Fuel Cell: Principle, Technique and Applications). 北京: 化学工业出版社(Beijing: Chem. Ind. Press), 2003. 160-382
[3] Aricò A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1(2): 133-161
[4] Gottesfeld S. J. Power Sources, 2007, 171(1): 37-45
[5] Petrii O A. J. Solid State Electr., 2008, 12(5): 609-642
[6] Antolini E. J. Power Sources, 2007, 170(1): 1-12
[7] Basri S, Kamarudin S K, Daud W R W, Yaakub Z. Int. J. Hydrogen Energy, 2010, 35(15): 7957-7970
[8] Tang L, Han B, Persson K, Friesen C, He T, Sieradzki K, Ceder G. J. Am. Chem. Soc., 2010, 132(2): 596-600
[9] 邵玉艳(Shao Y Y), 尹鸽平(Yin G P), 王家钧(Wang J J), 高云智(Gao Y Z). 催化学报(Chinese J. Catal. ), 2006, 27(3): 281-284
[10] Shao Y, Kou R, Wang J, Viswanathan V V, Kwak J H, Liu J, Wang Y, Lin Y. J. Power Sources, 2008, 185(1): 280-286
[11] Chen W, Sun G, Liang Z, Mao Q, Li H, Wang G, Xin Q, Chang H, Pak C, Seung D. J. Power Sources, 2006, 160(2): 933-939
[12] Yousfi-Steiner N, Mocotéguy P, Candusso D, Hissel D. J. Power Sources, 2009, 194(1): 130-145
[13] Wang Z B, Zuo P J, Chu Y Y, Shao Y Y, Yin G P. Int. J. Hydrogen Energy, 2009, 34(10): 4387-4394
[14] 陈维民(Chen W M), 辛勤(Xin Q), 孙公权(Sun G Q). 催化学报(Chinese J. Catal. ), 2008, 29(5): 497-502
[15] Chung C G, Kim L, Sung Y W, Lee J, Chung J S. Int. J. Hydrogen Energy, 2009, 34(21): 8974-8981
[16] Chen W, Sun G, Guo J, Zhao X, Yan S, Tian J, Tang S, Zhou Z, Xin Q. Electrochim. Acta, 2006, 51(12): 2391-2399
[17] Cha H C, Chen C Y, Shiu J Y. J. Power Sources, 2009, 192(2): 451-456
[18] Reiser C A, Bregoli L, Patterson T W, Yi J S, Yang J D, Perry M L, Jarvi T D. Electrochem. Solid-State Lett., 2005, 8(6): A273-A276
[19] Tang H, Qi Z, Ramani M, Elter J F. J. Power Sources, 2006, 158(2): 1306-1312
[20] Patterson T W, Darling R M. Electrochem. Solid-State Lett., 2006, 9(4): A183-A185
[21] Kangasniemi K H, Condit D A, Jarvic T D. J. Electrochem. Soc., 2004, 151(4): E125-E132
[22] Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y. J. Power Sources, 2007, 171(2): 331-339
[23] Siroma Z, Ishii K, Yasuda K, Miyazaki Y, Inaba M, Tasaka A. Electrochem. Commun., 2005, 7(11): 1153-1156
[24] Roen L M, Paik C H, Jarvic T D. Electrochem. Solid-State Lett., 2004, 7(1): A19-A22
[25] 邵玉艳(Shao Y Y), 尹鸽平(Yin G P), 高云智(Gao Y Z). 化学学报(Acta Chim. Sin.), 2006, 64(16): 1752-1756
[26] Shao Y, Yin G, Zhang J, Gao Y. Electrochim. Acta, 2006, 51(26): 5853-5857
[27] Wang X, Li W, Chen Z, Waje M, Yan Y. J. Power Sources, 2006, 158(1): 154-159
[28] Li L, Xing Y. J. Electrochem. Soc., 2006, 153(10): A1823-A1828
[29] Wang J, Yin G, Shao Y, Wang Z, Gao Y. J. Phys. Chem. C, 2008, 112(15): 5784-5789
[30] Stevens D A, Hicks M T, Haugen G M, Dahn J R. J. Electrochem. Soc., 2005, 152(12): A2309-A2315
[31] Zhang S, Shao Y, Li X, Nie Z, Wang Y, Liu J, Yin G, Lin Y. J. Power Sources, 2010, 195(2): 457-460
[32] Liu S H, Yu W Y, Chen C H, Lo A Y, Hwang B J, Chien S H, Liu S B. Chem. Mater., 2008, 20(4): 1622-1628
[33] Natarajan S K, Hamelin J. J. Electrochem. Soc., 2009, 156(2): B210-B215
[34] Chen Y, Wang J, Liu H, Li R, Sun X, Ye S, Knights S. Electrochem. Commun., 2009, 11(10): 2071-2076
[35] Yue B, Ma Y, Tao H, Yu L, Jian G, Wang X, Wang X, Lu Y, Hu Z. J. Mater. Chem., 2008, 18(15): 1747-1750
[36] Kundu S, Nagaiah T C, Xia W, Wang Y, Dommele S V, Bitter J H, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M. J. Phys. Chem. C, 2009, 113(32): 14302-14310
[37] Acharya C K, Li W, Liu Z, Kwon G, Turner C H, Lane A M, Nikles D, Klein T, Weaver M. J. Power Sources, 2009, 192(2): 324-329
[38] Li Y, Hu F P, Wang X, Shen P K. Electrochem. Commun., 2008, 10(7): 1101-1104
[39] Kou R, Shao Y, Wang D, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C, Lin Y, Wang Y, Aksay I A, Liu J. Electrochem. Commun., 2009, 11(5): 954-957
[40] Ye J, Liu J, Zhou Y, Zou Z, Gu J, Yu T. J. Power Sources, 2009, 194(2): 683-689
[41] Chen W, Xin Q, Sun G, Wang Q, Mao Q, Su H. J. Power Sources, 2008, 180(1): 199-204
[42] Hull R V, Li L, Xing Y, Chusuei C C. Chem. Mater., 2006, 18(7): 1780-1788
[43] Yang D Q, Sacher E. J. Phys. Chem. C, 2008, 112(11): 4075-4082
[44] Kim Y T, Mitani T. J. Catal., 2006, 238(2): 394-401
[45] Huang S Y, Ganesan P, Park S, Popov B N. J. Am. Chem. Soc., 2009, 131(39): 13898-13899
[46] Huang S Y, Ganesan P, Popov B N. Appl. Catal. B, 2010, 96(1/2): 224-231
[47] Chhina H, Campbell S, Kesler O. J. Power Sources, 2007, 164(2): 431-440
[48] Chhina H, Campbell S, Kesler O. J. Electrochem. Soc., 2007, 154(6): B533-B539
[49] Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E. J. Catal., 2008, 258(1): 143-152
[50] Du C, Chen M, Cao X, Yin G, Shi P. Electrochem. Commun., 2009, 11(2): 496-498
[51] Huang S Y, Ganesan P, Popov B N. Appl. Catal. B, 2009, 93(1/2): 75-81
[52] Drillet J F, Dittmeyer R, Jüttner K. J. Appl. Electrochem., 2007, 37(11): 1219-1226
[53] Takenaka S, Matsumori H, Nakagawa K, Matsune H, Tanabe E, Kishida M. J. Phys. Chem. C, 2007, 111(42): 15133-15136
[54] Takenaka S, Matsumori H, Matsune H, Tanabe E, Kishida M. J. Electrochem. Soc., 2008, 155(9): B929-B936
[55] Shimazaki Y, Kobayashi Y, Sugimasa M, Yamada S, Itabashi T, Miwa T, Konno M. J. Colloid. Interf. Sci., 2006, 300(1): 253-258
[56] Shimazaki Y, Hayasaka S, Koyama T, Nagao D, Kobayashi Y, Konno M. J. Colloid. Interf. Sci., 2010, 351(2): 580-583
[57] Ng Y H, Ikeda S, Harada T, Sakata T, Mori H, Takaoka A, Matsumura M. Langmuir, 2008, 24(12): 6307-6312
[58] Han D M, Guo Z P, Zhao Z W, Zeng R, Meng Y Z, Shu D, Liu H K. J. Power Sources, 2008, 184(2): 361-369
[59] Guo Z P, Han D M, Wexler D, Zeng R, Liu H K. Electrochim. Acta, 2008, 53(22): 6410-6416
[60] Maiyalagan T. Int. J. Hydrogen Energy, 2009, 34(7): 2874-2879
[61] Cheng N, Mu S, Pan M, Edwards P P. Electrochem. Commun., 2009, 11(8): 1610-1614
[62] Zhang S, Shao Y, Yin G, Lin Y. J. Mater. Chem., 2009, 19(42): 7995-8001
[63] Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315(5809): 220-222
[64] Liang Z X, Zhao T S, Xu J B. J. Power Sources, 2008, 185(1): 166-170
[65] Liu G, Zhang H, Zhong H, Hu J, Xu D, Shao Z. Electrochim. Acta, 2006, 51(26): 5710-5714
[66] Tian J, Sun G, Cai M, Mao Q, Xin Q. J. Electrochem. Soc., 2008, 155(2): B187-B193
[67] Tian J, Sun G, Jiang L, Yan S, Mao Q, Xin Q. Electrochem. Commun., 2007, 9(4): 563-568
[68] Pan D, Chen J, Tao W, Nie L, Yao S. Langmuir, 2006, 22(13): 5872-5876
[69] Li W, Lu J, Du J, Lu D, Chen H, Li H, Wu Y. Electrochem. Commun., 2005, 7(4): 406-410
[70] Scibioh M A, Kim S K, Cho E A, Lim T H, Hong S A, Ha H Y. Appl. Catal. B, 2008, 84(3/4): 773-782
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[6] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[7] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[8] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[9] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[10] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[11] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[12] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[13] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[14] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[15] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
阅读次数
全文


摘要

燃料电池纳米催化剂的稳定化