English
新闻公告
More
化学进展 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

石墨烯及其复合材料在锂离子电池中的应用

周冠蔚, 何雨石*, 杨晓伟, 高鹏飞, 廖小珍, 马紫峰   

  1. 上海交通大学化学工程系 电化学与能源技术研究所 上海 200240
  • 收稿日期:2011-06-01 修回日期:2011-06-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 何雨石 E-mail:ys-he@sjtu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2007CB209705)、国家自然科学基金项目(No.21006063,21073120)和上海市科委节能减排项目(No.10dz1202702)资助

Graphene-Containing Composite Materials for Lithium-Ion Batteries Applications

Zhou Guanwei, He Yushi*, Yang Xiaowei, Gao Pengfei, Liao Xiaozhen, Ma Zifeng   

  1. Institute of Electrochemical and Energy Technology, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2011-06-01 Revised:2011-06-01 Online:2012-03-24 Published:2011-11-25
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯及其复合材料在锂离子电池中的应用研究进展。在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。最后对石墨烯复合材料的研究前景进行了展望。
Graphene, a one-atom layer of graphite, possesses unique two dimensional structure and excellent electrical, mechanical, and thermal properties. It is considered as one of the most promising candidates for the future electrode materials for lithium ion batteries. Since the microstructure of the electrode material has great influence on its performance, the synthesis of electrode materials with graphene is widely studied to obtain specific morphologies and microstructures with great electrochemical performance improvements. In this review, we highlight recent advancements in the studies of the graphene-containing materials used in lithium ion batteries. Graphene acts as not only a mechanically stable buffer to accommodate the volume effect during cycling, but also a conductive network to enhance the electric conductivity of the anode composite materials. The graphene-containing anode materials can exhibit better cycling and rate performances. Especially, when forming optimized microstructures, such as sandwich-like blocks or other well-controlled encapsulating structures, the graphene can significantly improve electrochemical properties of anode composite materials. A continuous 3D conductive network formed by graphene in the cathode composite materials can effectively improve the electron and ion transportation. Additionally, graphene used as the conductive additive can achieve better charge/discharge performance with a much lower adding amount than those of commercial carbon-based additives. A prospect for future research developments in this field is proposed at the end of this review. Contents
1 Introduction
2 Preparation of graphene
3 Application of graphene in anodes of lithium-ion batteries
3.1 Electrochemical properties of graphene
3.2 Composite materials based on graphene
4 Application of graphene in cathodes of lithium-ion batteries
5 Application of graphene as conductive additive
6 Conclusions and Outlook

中图分类号: 

()
[1] Brandt K. Solid State Ionics, 1994, 69: 173-183
[2] 杨遇春 (Yang Y C). 电池 (Battery Bimonthly), 1993, 23 (5): 230-233
[3] Yazami R, Touzain P. J. Power Sources, 1983, 9: 365-371
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[5] Chae H K, Siberio-Pérez D Y, Kim J, Go Y B, Eddaoudi M, Matzger A J, O’Keeffe M, Yaghi O M. Nature, 2004, 427: 523-527
[6] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201-204
[7] Sclladler L S, Giammris S C, Ajayan P M. Appl. Phys. Lett., 1998, 73: 3842-3844
[8] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud’homme R K, Aksay I A. Chem. Mater., 2007, 19: 4396-4404
[9] Srivastava S K, Shukla A K, Vankar V D, Kumar V. Thin Solid Films, 2005, 492: 124-130
[10] De Heer W A, Berger C, Wu X S, First P N, Conard E H, Li X B, Li T B, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Commun., 2007, 143: 92-100
[11] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, de Heer W A. J. Phys. Chem. B, 2004, 108: 19912-19916
[12] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Adv. Mater., 2008, 20: 4490-4493
[13] Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Nano Lett., 2007, 7: 3499-3503
[14] Brodie B C. Ann. Chim. Phys., 1860, 59: 466-472
[15] Staudenmaier L. Ber. Deut. Chem. Ges., 1898, 31:1481-1499
[16] Fan Z J, Kai W, Yan J, Wei T, Zhi L, Feng J, Ren Y, Song L, Wei F. ACS Nano, 2011, 5: 191-198
[17] Salas E C, Sun Z, Lüttge A, Tour J M. ACS Nano, 2010, 4: 4852-4856
[18] Schniepp H C, Li J L, McAllister M J,S ai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A, Aksay I A. J. Phys. Chem. B, 2006, 110 (17):8535-8539
[19] Lv W, Tang D, He Y, You C, Shi Z, Chen X, Chen C, Hou P, Liu C, Yang Q. ACS Nano, 2009, 3: 3730-3736
[20] Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 411-417
[21] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458: 872-876
[22] Wei D C, Liu Y Q. Adv. Mater., 2010, 22: 3225-3241
[23] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2560-2566
[24] 柏嵩(Bai S), 沈小平(Shen X P).化学进展(Progress in Chemistry), 2010, 22(11): 2107-2118
[25] Suzuki T, Hasegawa T, Mukai S R, Tamon H. Carbon, 2003, 41: 1933-1939
[26] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277-2282
[27] Wang G, Shen X, Yao J, Park J. Carbon, 2009, 47: 2049-2053
[28] Guo P, Song H H, Chen X H. Electrochem. Commun., 2009, 11: 1320-1324
[29] Abouimrane A, Compton O C, Amine K, Nguyen S T. J. Phys. Chem. C, 2010, 114: 12800-12804
[30] Wang C Y, Li D, Too C O, Wallace G G. Chem. Mater., 2009, 21: 2604-2606
[31] Xiao X C, Liu P, Wang J S, Verbrugge M W, Balogh M P. Electrochem. Commun., 2011, 13: 209-212
[32] Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H. Electrochim. Acta, 2010, 55: 3909-3914
[33] Tong X, Wang H, Wang G, Wan L, Ren Z, Bai J, Bai J. J. Solid State Chem., 2011, 184: 982-989
[34] Paek S M, Yoo E, Honma I. Nano Lett., 2009, 9: 72-75
[35] Yao J, Shen X P, Wang B, Liu H K, Wang G X. Electrochem. Commun., 2009, 11: 1849-1852
[36] Du Z F, Yin X M, Zhang M, Hao Q Y, Wang Y G, Wang T H. Mater. Lett., 2010, 64: 2076-2079
[37] Wang X Y, Zhou X F, Yao K, Zhang J G, Liu Z P. Carbon, 2011, 49: 133-139
[38] Wang G X, Wang B, Wang X L, Park J, Dou S X, Ahn H, Kim K. J. Mater. Chem., 2009, 19: 8378-8384
[39] Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H. Electrochim. Acta, 2011, 56: 4532-4539
[40] Wang D H, Kou R, Choi D, Yang Z G, Nie Z, Li J, Saraf L V, Hu D, Zhang J G, Graff G L, Liu J, Pope M A, Aksay I A. ACS Nano, 2010, 4: 1587-1595
[41] Li Y M, Lv X J, Lu J, Li J H. J. Phys. Chem. C, 2010, 114: 21770-21774
[42] Chen S Q, Chen P, Wu M H, Pan D Y, Wang Y. Electrochem. Commun., 2010, 12: 1302-1306
[43] Wolfenstine J. J. Power Sources, 1999, 79: 111-113
[44] Chou S J, Wang J Z, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2010, 12: 303-306
[45] Xiang H F, Zhang K, Ji G, Lee J Y, Zou C J, Chen X D, Wu J S. Carbon, 2011, 49: 1787-1796
[46] Wang J Z, Zhong C, Chou S L, Liu H K. Electrochem. Commun., 2010, 12: 1467-1470
[47] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 2025-2027
[48] Evanoff K, Magasinski A, Yang J, Yushin G. Adv. Energy Mater., 2011, 1(4): 495-498
[49] He Y S , Gao P F, Chen J, Yang X W, Liao X Z, Yang J, Ma Z F. RSC Adv., 2011, 1(6): 958-960
[50] Kim H, Seo D, Kim S, Kim J, Kang K. Carbon, 2011, 49: 326-332
[51] Li B, Cao H, Shao J, Li G, Qu M, Yin G. Inorg. Chem., 2011, 50 (5): 1628-1632
[52] Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z. Electrochim. Acta, 2010, 55: 6973-6978
[53] Wu Z, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H. ACS Nano, 2010, 4 (6): 3187-3194
[54] Yang S P, Cui G K, Pang S P, Cao Q, Kolb U, Feng X L, Maier J, Muellen K. ChemSusChem, 2010, 3: 236-239
[55] He Y S, Bai D W, Yang X W, Chen J, Liao X J, Ma Z F. Electrochem. Commun., 2010, 12: 570-573
[56] Yang S B, Feng X L, Ivanovici S, Müllen K. Angew. Chem. Int. Ed., 2010, 49: 8408-8411
[57] Wang H L, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y Y, Cui Y, Dai H J. J. Am. Chem. Soc., 2010, 132: 13978-13980
[58] Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P. Electrochim. Acta, 2011, 56: 2306-2311
[59] Lian P C, Zhu X F, Xiang H F, Li Z, Yang W S, Wang H H. Electrochim. Acta, 2010, 56: 834-840
[60] Zhou G, Wang D W, Li F, Zhang L, Li N, Wu Z S, Wen L, Lu G Q, Cheng H M. Chem. Mater., 2010, 22: 5306-5313
[61] Wang G, Liu T, Luo Y J, Tong X, Wan L J, Zhao Y, Wang H, Ren Z Y, Bai J B. J. Alloys Compd., 2011, 509(24): L216-L220
[62] Wang D H, Choi D, Li J, Yang Z G, Nie Z M, Kou R, Hu D, Wang C, Saraf L V, Zhang J G, Aksay I A, Liu J. ACS Nano, 2009, 3: 907-914
[63] Shen L F, Yuan C Z, Luo H J, Zhang X G, Yang S D, Lu X J. Nanoscale, 2011, 3: 572-574
[64] Zhu N, Liu W, Xue M Q, Xie Z, Zhao D, Zhang M N, Chen J T, Cao T. Electrochim. Acta, 2010, 55: 5813-5818
[65] Fan Z J, Yan J, Wei T, Ning G Q, Zhi L J, Liu J C, Cao D X, Wang G L, Wei F. ACS Nano, 2011, 5(4): 2787-2794
[66] Wang L, Wang H B, Liu Z H, Xiao C, Dong S M, Han P X, Zhang Z Y, Zhang X Y, Bi C F, Cui G L. Solid State Ionics, 2010, 181: 1685-1689
[67] Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Electrochem. Commun., 2010, 12: 10-13
[68] Zhou X F, Wang F, Zhu Y M, Liu Z P. J. Mater. Chem., 2011, 21: 3353-3358
[69] Wang X L, Han W Q. ACS Appl. Mater. Interfaces, 2010, 2: 3709-3713
[70] Guo P, Song H H, Chen X H, Ma L L, Wang G H, Wang F. Anal. Chim. Acta, 2011, 688: 146-155
[71] Su F Y, You C H, He Y B, Lv W, Cui W, Jin F M, Li B H, Yang Q, Kang F. J. Mater. Chem., 2010, 20: 9644-9650
[72] Yang X W, Zhu J W, Qiu L, Li D. Adv. Mater., 2011, 23: 2833-2838
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[10] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[11] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[12] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[15] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.