English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

磁性离子液体的应用研究

陈彪1, 隆泉2, 郑保忠1*   

  1. 1. 云南大学材料科学与工程系 昆明 650091;
    2. 云南大学现代分析测试中心 昆明 650091
  • 收稿日期:2011-07-01 修回日期:2011-10-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 郑保忠 E-mail:bzhzheng@ynu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20172044)资助

Application of Magnetic Ionic Liquids

Chen Biao1, Long Quan2, Zheng Baozhong1*   

  1. 1. Department of Materials Science and Engineering, Yunnan University, Kunming 650091, China;
    2. Modern Analysis and Testing Center, Yunnan University, Kunming 650091, China
  • Received:2011-07-01 Revised:2011-10-01 Online:2012-03-24 Published:2011-11-25
磁性离子液体是指能够吸附在磁铁上,在外加磁场作用下具有一定磁化强度的离子液体。本文综述了自2004年磁性离子液体概念提出至今在各领域的应用,其可以催化吡咯、3-甲基噻吩等单体合成导电高分子纳米微球,同时起到溶剂和模板的作用;还可以通过外加磁场调整产物的微观结构和形貌,从而得到不同的纳米结构;它也可以充当Lewis酸催化剂,催化傅克反应等一系列化学反应,并可以回收重复使用,而且回收有望通过磁场简单实现;与碳纳米管以共价键结合可以制备具有磁性的碳纳米管。除此之外,磁性离子液体在光控顺磁性超分子体系、吸收有机挥发物等领域的应用在近年也陆续有报道。
The unique physicochemical properties of magnetic ionic liquid (MIL) have attracted increasing interest due to their potential applications in various areas. In this paper, recent progress in applications of magnetic ionic liquid has been reviewed and discussed. Magnetic ionic liquid is a kind of ionic liquid which formed by organic cation and inorganic anion. It can be absorbed on the magnet, and has a certain magnetization in the presence of external magnetic field. Magnetic ionic liquid is a green solvent. In addition, magnetic ionic liquid can play as solvent, catalyst and template in organic synthesis, the resulting product is easy to separate and the structure of the product can be adjusted by an external magnetic field. Magnetic ionic liquid can be recycled and reused, and the catalytic activity of magnetic ionic liquid is not significantly reduced. In areas of separation, analysis, preparation of nano-materials,magnetic ionic liquid also have unique advantages. Especially, magnetic carbon nanotubes can be synthesized by using magnetic ionic liquid and carbon nanotubes. Contents
1 Introduction
2 The sorts of magnetic ionic liquids
3 The application of magnetic ionic liquids in catalysis
3.1 Catalyze polymerization reaction
3.2 Catalyze Friedel-Crafts reaction
3.3 Catalyze other reactions
4 The application of magnetic ionic liquids in carbon nanotubes
5 The application of magnetic ionic liquids in other fields
6 Recovery of magnetic ionic liquids
7 Conclusions and prospects

中图分类号: 

()
[1] Lenevisch S, Distefano M D. Analytical Biochemistry, 2011, 408: 316-320
[2] Nguyen T V, Zhang R, Vigneswaran S, Ngo H H, Kandasamy J, Mathes P. Desalination, 2011, 276: 96-102
[3] Luo X G, Zhang L N. Journal of Hazardous Materials, 2009, 171: 340-347
[4] Lim C W, Lee I S. Nanotoday, 2010, 5: 412-434
[5] Chen T Y, Cao Z, Guo X L, Nie J J, Xu J T, Fan Z Q, Du B Y. Polymer, 2011, 52: 172-179
[6] Seddon K R. Chem. Tech. Biotechnol., 1997, 2: 351-356
[7] 杨富明(Yang F M). 河南大学硕士论文(Master Dissertation of Henan University), 2010
[8] Hayashi S, Hamaguchi H. Chem. Lett., 2004, 33: 1590-1591
[9] Hayashi S, Hamaguchi H. Chem. Lett., 2005, 34: 740-740
[10] Hayashi S, Saha S, Hamaguchi H. IEEE Transactions on Magnetics, 2006, 42: 12-14
[11] Yang J Z, Xu W G, Zhang Q G, Jin Y, Zhang Z H. J. Chem. Thermodynamics, 2003, 35: 1855-1860
[12] Zhang Q G, Yang J Z, Lu X M, Gui J S, Huang M. Fluid Phase Equilibria, 2004, 207-211
[13] Pedro I D, Rojas D P, Albo J, Luis P, Irabien A, Blanco J A, Fermández J R. Journal of Physics: Condensed Matter, 2010, 22: art. no. 296006
[14] Pedro I D, Rojas D P, Blanco J A, Fernández J R. Journal of Magnetism and Magnetic Materials, 2011, 323: 1254-1257
[15] Yoshida Y, Tanaka H, Saito G. Chem. Lett., 2007, 36: 1096-1097
[16] Nguyen M D, Nguyen L V, Jeon E H, Kim J H, Cheong M, Kim H S, Lee J S. Catalysis, 2008, 258: 5-13
[17] 李小华(Li X H), 杨富明(Yang F M), 周清(Zhou Q), 张锁江(Zhang S J). 过程工程学报(The Chinese Journal of Process Engineering), 2010, 10: 788-794
[18] Yoshida Y, Otsuka A, Saito G, Natsume S, Nishibori E, Takata M, Sakata M, Takahashi M, Yoko T. Bull. Chem. Soc. Jpn., 2005, 78: 1921-1928
[19] Malick B, Balke B, Felser C, Mudring A V. Angewandte Chemie-International Edition, 2008, 47: 7635-7638
[20] Tang S, Babai A, Mudring A. Angew. Chem. Int. Ed., 2008, 47: 7631-7634
[21] Brown R J C, Dyson P J, Ellis D J, Welton T. Chem. Commun., 2001, 1862-1863
[22] Wei X, Yu L, Wang D, Jin X, Chen G Z. Green Chem., 2008, 10: 296-305
[23] Sasaki T, Tada M, Zhong C, Kume T, Twasawa Y. Journal of Molecular Catalysis A: Chemical, 2008, 279: 200-209
[24] Kim J Y, Kim J T, Song E A, Min Y K, Hamaguchi H. Macromolecules, 2008, 41: 2886-2889
[25] Gordon C M, Holbrey J D, Kenney A R, Seddon K R. Journal of Materials Chemistry, 1998, 8: 2627-2636
[26] Pringle J M, Orawan N, Chen J, Gordon G W, Maeia F, Douglas R M. Synthetic Metals, 2006, 156: 973-983
[27] Li L, Huang Y, Yan G, Liu F, Huang Z, Ma Z. Materials Letters, 2009, 63: 8-10
[28] Shang S, Li L, Yang X, Zheng L. Colloid and Interface Science, 2009, 333: 415-418
[29] Wei Y, Zhao Y, Li L, Yang X M, Yu X H, Yan G P. Poly. Adv. Technol., 2010, 21: 742-745
[30] 来婧娟(Lai J J), 周建华(Zhou J H), 郑敏刚(Zheng M G), 隆泉(Long Q), 郑保忠(Zheng B Z). 化学进展(Progress in Chemistry), 2008, 20: 899-908
[31] 黄强(Huang Q), 王丽丽(Wang L L), 郑保忠(Zheng B Z), 隆泉(Long Q). 化学进展(Progress in Chemistry), 2009, 21: 1782-1791
[32] 黄强(Huang Q), 郑保忠(Zheng B Z), 张树波(Zhang S B), 管洪涛(Guan H T), 陈刚(Chen G). 实验室研究与探索(Research and Exploration in Laboratory), 2010, 29: 24-26
[33] Kogelnig D, Stojanovic A, Kammer F V D, Terzief P, Galanski M, Jirsa F, Krachler R, Hofmann T, Keppler B K. Inorganic Chemistry Communications, 2010, 13: 1485-1488
[34] 丁仁岭(Ding R L), 孙学文(Sun X W). 油气田地面工程(Oil and Gas Field Surface Engineering), 2003, 22: 54-55
[35] 孙学文(Sun X W), 赵锁奇(Zhao S Q), 王仁安(Wang R A). 催化学报(Catalysis), 2004, 25: 247-251
[36] DeCastro C, Sauvage E, Valkenberg M H, Hölderich W F. Journal of Catalysis, 2000, 196: 86-94
[37] Qiao K, Deng Y. Journal of Molecular Catalysis A, 2001, 171: 81-84
[38] Sun X, Zhao S. Chem. Eng., 2006, 14: 289-293
[39] Csihony S, Mehdi H, Horváth I T. Green Chemistry, 2001, 3: 307-309
[40] Alexander M V, Khandekar A C, Samant S D. Molecular Catalysis A: Chemical, 2004, 223: 75-83
[41] Yin D H, Li C Z, Tao L, Yu N, Hu S, Yin D. Journal of Molecular Catalysis A: Chemical, 2006, 245: 260-265
[42] Li C Z, Liu W J, Zhao Z B. Catalysis Communications, 2007, 8: 1834-1837
[43] Bahrami K, Khodei M M, Shahbazi F. Tetrahedron Letters, 2008, 49: 3931-3934
[44] Bica K, Gaertner P. Organic Letters, 2006, 8: 733-735
[45] 刘艳梅(Liu Y M), 应敏(Ying M), 杨志杰(Yang Z J), 乐长高(Le Z G). 有机化学(Organic Chemistry), 2006, 26: 1286-1290
[46] Khosropour A R, Mohammadpoor-Baltork I, Ghorbankhani H. Catalysis Communications, 2006, 7: 713-716
[47] Wang H, Yan R, Li Z, Zhang X, Zhang S. Catalysis Communications, 2010, 11: 763-767
[48] Hasegawa E, Hirori N, Osawa C, Tayama E, Iwamoto H. Tetrahedron Letters, 2010, 51: 6535-6538
[49] Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Mirjafari A. Comptes Rendus Chimie, 2010, 13: 1468-1473
[50] Hu Y L, Liu Q F, Lu T T, Lu M. Catalysis Communications, 2010, 11: 923-927
[51] Pei X, Yan Y H, Yan L, Yang P, Wang J, Xu R, Chan-Park M B. Carbon, 2010, 48: 2501-2505
[52] Akitsu T, Einaga Y. Inorganic Chemistry Communications, 2006, 9: 1108-1110
[53] Jiang Y, Guo C, Liu H. China Particuology, 2007, 5: 130-133
[54] Lee S H, Ha S H, You C Y, Koo Y M. Korean J. Chem. Eng., 2007, 24: 436-437
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
阅读次数
全文


摘要

磁性离子液体的应用研究