English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

蛋白质与高分子的自组装

何乃普1*, 王荣民2   

  1. 1. 兰州交通大学化学与生物工程学院功能高分子研究所 兰州 730070;
    2. 西北师范大学化学化工 学院生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料重点实验室 兰州 730070
  • 收稿日期:2011-05-01 修回日期:2011-06-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    兰州交通大学人才引进科研启动基金(No.152002)和国家自然科学基金项目(No.21164003)资助

Self-Assembly of Protein with Polymer

He Naipu1*, Wang Rongmin2   

  1. 1. Institute of Functional Polymer, College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2011-05-01 Revised:2011-06-01 Online:2012-01-24 Published:2011-11-22

蛋白质是一类具有独特三维空间结构的生物高分子,其分子内部非共价键协同作用是形成三维空间结构的重要驱动力。同时,蛋白质分子与其他高分子之间也可以通过非共价键作用实现自组装。高分子链和蛋白质的结构特征是实现自组装的关键,溶液pH值、离子强度以及温度的变化会影响它们之间非共价键作用的类型和强度。本文归纳了水溶性高分子、嵌段共聚物和多糖与球状蛋白自组装的最新研究进展,分别从分子结构特征和溶液性质等因素讨论了其对高分子与蛋白质实现自组装的影响。其中,多糖与蛋白质的非共价键作用是化学与生物科学交叉领域最为活跃的研究课题之一,通过研究蛋白质与其他高分子的非共价键作用,对于理解和认识生命过程的本质与规律具有重要的意义,同时,在材料科学、纳米技术、食品科学等相关领域具有重要的应用价值。

Protein is a class of major biomacromolecules with a unique three-dimensional spatial structures. The intramolecular cooperative non-covalent interactions of protein play a crucial role in formation of this structure. Meanwhile, self-assembly of protein with other polymers can be also induced by these interactions. The structures of polymer chain and protein play a key role in the self-assembly of protein with polymer. The changes of pH, ionic strength and temperature of solution affect the type and intensity of non-covalent interactions. The present review summaries the latest research on self-assembly of the water-soluble polymers, block copolymers, and polysaccharides with globular protein. The molecular structure of polymers and solution properties effecting on the self-assembly of protein with polymers are discussed in details. Especially, non-covalent interaction between polysaccharide and protein is a major research topic in interdisciplinary field between chemistry and biology. Understanding of non-covalent interactions between protein and other polymers is benefit to discover the nature and rule of life, and has important applications in materials science, nanotechnology, food science, etc.

Contents
1 Introduction
2 Self-assembly of water-soluble polymer with protein
2.1 Influence of the molar ratio
2.2 Influence of polymer molecular weight
3 Self-assembly of block copolymer with protein
4 Self-assembly of polysaccharide with protein
4.1 Influence of pH
4.2 Influence of ionic strength
4.3 Influence of temperature
5 Conclusions and Outlook

中图分类号: 

()

[1] Turgeon S L, Beaulieub M, Schmittb C, Sanchezc C. Curr. Opin. Colloid Interface Sci., 2003, 8: 401-414
[2] 黄毅(Huang Y), 黄金花(Huang J H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 化学进展(Progress in Chemitry), 2008, 20: 942-950
[3] Nair L S, Laurencin C T. Prog. Polym. Sci., 2007, 32: 762-798
[4] Deming T J. Prog. Polym. Sci., 2007, 32: 858-875
[5] Chen H, Yuan L, Song W, Wu Z K, Li D. Prog. Polym. Sci., 2008, 33: 1059-1087
[6] Ikkalal O, ten Brinke G. Science, 2002, 295: 2407-2409
[7] Taubert A, Napoli A, Meier W. Curr. Opin. Chem. Biol., 2004, 8: 598-603
[8] Turgeon S L, Schmitt C, Sanchez C. Curr. Opin. Colloid Interface Sci., 2007, 12: 166-178
[9] Turgeon S L, Laneuville S I. Mod. Biopolym. Sci., 2009, 327-363
[10] 李扬眉(Li Y M), 陈志春(Chen Z C), 何琳(He L), 徐立恒(Xu L H), 林贤福(Lin X F). 化学进展(Progress in Chemitry), 2002, 14: 212-216
[11] 郭敏杰(Guo M J), 高婷(Gao T), 樊志(Fan Z), 么敬霞(Yao J X), 夏建军(Xia J J), 宓怀风(Mi H F). 中国科学: 化学(Science China Chemistry), 2010, 40: 282-290
[12] Matsudo T, Ogawa K, Kokufuta E. Biomacromolecules, 2003, 4: 1794-1799
[13] Matsudo T, Ogawa K, Kokufuta E. Biomacromolecules, 2003, 4 : 728-735
[14] Ogawa K, Nakayama A, Kokufuta E. J. Phys. Chem. B, 2003, 107: 8223-8227
[15] Topuzogullar M, Cimen N S, Mustafaeva Z, Mustafaev M. Eur. Polym. J., 2007, 43: 2935-2946
[16] Cheng H, Zhu J L, Zeng X, Jing Y, Zhang X Z, Zhuo R X. Bioconjugate Chem., 2009, 20: 481-487
[17] Yan Q, Yuan J Y, Zhang F B, Sui X F, Xie X M, Yin Y W, Wang S F, Wei Y. Biomacromolecules, 2009, 10: 2033-2042
[18] Molina I, Li S M, Martinez M B, Vert M. Biomaterials, 2001, 22: 363-369
[19] Dutta P, Shrivastava S, Dey J. Macromol. Biosci., 2009, 9: 1116-1126
[20] Blanazs A, Armes S P, Ryan A J. Macromol. Rapid Commun., 2009, 30: 267-277
[21] Aaron Lau K H, Bang J, Kim D H, Knoll W. Adv. Funct. Mater., 2008, 18: 3148-3157
[22] Wittemann A, Azzam T, Eisenberg A. Langmuir, 2007, 23: 2224-2230
[23] Miller A C, Bershteyn A, Tan W, Hammond P T, Cohen R E, Irvine D J. Biomacromolecules, 2009, 10: 732-741
[24] Simone E A, Dziubla T D, Colon-Gonzalez F, Discher D E, Muzykantov V R. Biomacromolecules, 2007, 8: 3914-3921
[25] Castelletto V, Krysmann M. Biomacromolecules, 2007, 8: 2244-2249
[26] Castelletto V, Krysmann M J, Clifton L A, Lambourne J, Noirez L. J. Phys. Chem. B, 2007, 111: 11330-11336
[27] Goodman D S. Science, 1957, 125: 1296-1297
[28] Richieri G V, Anel A, Kleinfeld A M. Biochemistry, 1993, 32: 7574-7580
[29] Kelarakis A, Castelletto V, Krysmann M J, Havredaki V, Viras K, Hamley I W. Biomacromolecules, 2008, 9: 1366-1371
[30] Chen B, Metera K, Sleiman H F. Macromolecules, 2005, 38: 1084-1090
[31] Cresce A V, Silverstein J S, Bentley W E, Kofinas P. Macromolecules, 2006, 39: 5826-5829
[32] Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Acc. Chem. Res., 2011, 44: 1039-1049
[33] 鲁从华(Lu C H), 罗传秋(Luo C Q), 曹维孝(Cao W X). 高分子学报(Acta Polymerica Sinica), 2002, (1): 116-119
[34] Delben F, Stefancich S. J. Food. Eng., 1997, 31: 325-346
[35] Cooper C L, Dubin P L, Kayitmazer A B, Turksen S. Curr. Opin. Colloid Interface Sci., 2005, 10: 52-78
[36] Nishinari K, Zhang H, Ikeda S. Curr. Opin. Colloid Interface Sci., 2000, 5: 195-201
[37] 马豫峰(Ma Y F), 蔡继业(Cai J Y), 杨培慧(Yang P H), 陈勇(Chen Y). 高分子材料科学与工程(Polymer Material Science and Engineering), 2005, 21: 272-275
[38] De Kruif C G, Weinbrecka F, de Vriesc R. Curr. Opin. Colloid Interface Sci., 2004, 9: 340-349
[39] Sanchez C, Renard D. Int. J. Pharm., 2002, 242: 319-324
[40] Doublier J L, Garnier C, Renard D, Sanchez C. Curr. Opin. Colloid Interface Sci., 2000, 5: 202-214
[41] Schmidt I, Cousin F, Huchon C, Boué F, Axelos M A V. Biomacromolecules, 2009, 10: 1346-1357
[42] Puppo M C, Aón M C. J. Agric. Food Chem., 1998, 46: 3039-3046
[43] Weinbreck F, de Vries R, Schrooyen P, de Kruif C G. Biomacromolecules, 2003, 4: 293-303
[44] Tobitani A, Ross-Murphy S B. Macromolecules, 1997, 30: 4855-4862
[45] Galazka V B, Smith D, Ledward D A, Dickinson E. Food Chem., 1999, 64: 303-310
[46] Weinbreck F, Tromp R H, de Kruif C G. Biomacromolecules, 2004, 5: 1437-1445
[47] Seyrek E, Dubin P L, Tribet C, Gamble E A. Biomacromolecules, 2003, 4: 273-282
[48] Dobrynin A V. Macromolecules, 2005, 38: 9304-9314
[49] Dobrynin A V. Macromolecules, 2006, 39: 9519-9527
[50] Hsiao P Y, Luijten E. Phys. Rev. Lett., 2006, 97: 148301-148304
[51] Cho J, Heuzey M C, Begin A, Carreau P J. J. Food Eng., 2006, 74: 500-515
[52] Tsuboi A, Izumi T, Hirata M, Xia J L, Dubin P L, Kokufuta E. Langmuir, 1996, 12: 6295-6303
[53] Pouzot M, Durand D, Nicolai T. Macromolecules, 2004, 37: 8703-8708
[54] Kayitmazer A B, Seyrek E, Dubin P L, Staggemeier B A. J. Phys. Chem. B, 2003, 107: 8158-8165
[55] Wang X Y, Wang Y W, Ruengruglikit C, Huang Q R. J. Agric. Food Chem., 2007, 55: 10432-10436
[56] 何乃普(He N P). 西北师范大学博士学位论文(Doctoral Dissertation of Northwest Normal University), 2010
[57] Ducel V, Saulnier P, Richard J, Boury F. Colloids Surf. B, 2005, 41: 95-102
[58] Arnaudov L N, de Vries R. Biomacromolecules, 2006, 7: 3490-3498
[59] Gosal W S, Clark A H, Ross-Murphy S B. Biomacromolecules, 2004, 5: 2408-2419
[60] Gosal W S, Clark A H, Ross-Murphy S B. Biomacromolecules, 2004, 5: 2420-2429
[61] De la Fuente M A, Singh H, Hemar Y. Trends Food Sci. Technol., 2002, 13: 262-274
[62] Karim A A, Bhat R. Trends Food Sci. Technol., 2008, 19: 644-656
[63] Najbar L V, Considine R F, Drummond C J. Langmuir, 2003, 19: 2880-2887
[64] Van der Linden E, Venema P. Curr. Opin. Colloid Interface Sci., 2007, 12: 158-165
[65] Stefani M. Biochim. Biophys. Acta, 2004, 1739: 4-25
[66] Bruinsma R, Pincus P. Curr. Opin. Solid State Mater. Sci., 1996, 1: 401-406
[67] Smith A M, Banwell E F, Edwards W R, Pandya M J, Woolfson D N. Adv. Funct. Mater., 2006, 16: 1022-1030
[68] Holder P G, Francis M B. Angew. Chem. Int. Ed., 2007, 46: 4370-4373
[69] Wang W. Int. J. Pharm., 2005, 289: 1-30
[70] Veerman C, de Schiffart G, Sagis L M C, van der Linden E. Int. J. Biol. Macromol., 2003, 33: 121-127
[71] Weijers M, Visschers R W, Nicolai T. Macromolecules, 2004, 37: 8709-8714
[72] Safinya C R. Colloids Surf. A, 1997, 128: 183-195
[73] Veerman C, Sagis L M C, Heck J, van der Linden E. Int. J. Biol. Macromol., 2003, 31: 139-146
[74] Neiser S, Draget K I, Smidsrard O. Food Hydrocolloids, 1998, 12: 127-132
[75] Neiser S, Draget K I, Smidsrd O. Food Hydrocolloids, 1999, 13: 445-458
[76] Zhao Y Y, Li F Y, Carvajal M T, Harris M T. J. Colloid Interface Sci., 2009, 332: 345-353
[77] Chen L Y, Subirade M. Biomaterials, 2005, 26: 6041-6053
[78] Hong Y H, McClements D J. J. Agric. Food Chem., 2007, 55: 5653-5660
[79] Mounsey J S, O'Kennedy B T, Fenelon M A, Brodkorb A. Food Hydrocolloids, 2008, 22: 65-73
[80] Liu Z H, Jiao Y P, Wang Y F, Zhou C R, Zhang Z Y. Adv. Drug Del. Rev., 2008, 60: 1650-1662
[81] Yu S Y, Hu J H, Pan X Y, Yao P, Jiang M. Langmuir, 2006, 22: 2754-2759
[82] Gosal W S, Ross-Murphy S B. Curr. Opin. Colloid Interface Sci., 2000, 5: 188-194
[83] Nicolai T, Durand D. Curr. Opin. Colloid Interface Sci., 2007, 12: 23-28
[84] Wang X Y, Lee J Y, Wang Y W, Huang Q R. Biomacromolecules, 2007, 8: 992-997
[85] Cousin F, Gummel J, Ung D, Boué F. Langmuir, 2005, 21: 9675-9688

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[8] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[9] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[10] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[11] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[12] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[13] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[14] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[15] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
阅读次数
全文


摘要

蛋白质与高分子的自组装