English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 80-93 前一篇   后一篇

• 综述与评论 •

有机共轭分子自组装方法

宋世松1, 戴郁菁2*, 范曲立1*, 黄维1*   

  1. 1. 南京邮电大学信息材料与纳米技术研究院 江苏省有机电子与信息显示重点实验室 南京 210046;
    2. 南京师范大学分析测试中心 江苏省生物功能材料重点实验室 南京210046
  • 收稿日期:2011-04-01 修回日期:2011-07-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.009CB930600)、国家自然科学基金项目(No.20874048, 51173080,21104033)、教育部新世纪优秀人才(No.NCET-10-0179)和高等学校博士点专项科研基金项目(No.20093223110003)资助

Self-Assembly Methods of Organic Conjugated Molecules

Song Shisong1, DaiYujing2*, Fan Quli1*, Huang Wei1*   

  1. 1. Jiangsu Key Lab of Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
    2. Analysis & Testing Center, Jiangsu Key Laboratory of Bio-Functional Materials, Nanjing Normal University, Nanjing 210046, China
  • Received:2011-04-01 Revised:2011-07-01 Online:2012-01-24 Published:2011-11-22

本文综述了有机共轭分子自组装方法的最新研究进展,从有机共轭分子的合成、自组装方法、光电性质及应用等方面进行了阐述,着重阐述了适用于有机共轭分子的各种自组装方法。认为它们的自组装在有机光电材料或器件方面具有广阔的应用前景及潜在的应用价值。

This paper systematically introduces the research development of self-assembly methods of organic conjugated molecules, including the synthesis,self-assembly methods, photophysical properties and application of organic conjugated molecules. All kinds of self-assembly methods applicable to organic conjugated molecules are emphatically expounded. Organic photoelectric materials or devices produced by the self-assembly have broad application prospect and potential application value.

Contents
1 Introduction
2 Basic principle of self-assembly
3 Self-assembly methods of organic conjugated molecules
3.1 Self-assembly by light stimulation
3.2 Self-assembly by dispersing solvent
3.3 Self-assembly by physical adsorption
3.4 Self-assembly by evaporating solvent
3.5 Self-assembly by precipitation
3.6 Self-assembly by surfactant auxiliary
3.7 Self-assembly on substrate
3.8 Self-assembly by supramolecular recognition
4 Conclusions and outlook

中图分类号: 

()

[1] Lee H J, Hong J K, Goo H C. J. Biomat. Sci. Polym. E, 2002, 13 (8): 939-946
[2] Mikawa T, Masui R, Ogawa T. J. Mol. Biol., 1995, 250 (36): 471-477
[3] Salil G, Israel R, Takaya T, Fryd M. Peptides, 2002, 23 (3): 201-208
[4] Safinya C R, Colloids G, Surfaces A, Krause M, Svitova L. Physicochem. Eng. A, 1997, 128 (3): 183-189
[5] Ottova A L, Tien H T. Bioelectrochem. Bioenerg., 1997, 133 (42): 141-144
[6] Schneider J P, Pochan D J, Ozbas B. J. Am. Chem. Soc., 2002, 124 (50): 15030-15038
[7] Marty L T, Bonnot A M, Bonhomme A. Small, 2006, 64 (2): 110-115
[8] Tans S J, Dekker C. Nature, 2000, 404 (3): 834-835
[9] Chang S C, Li Z Y, Lau C N. Appl. Phys. Lett., 2003, 83 (15): 3198-3200
[10] Liu H B, Xu J L, Li Y J, Li Y L. Acc. Chem. Res., 2010, 43 (12): 1496-1508
[11] Melosh N A, Boukai A, Diana F. Science, 2003, 300 (18): 112-115
[12] Wei Z, Heiko O J. Adv. Mater., 2006, 18 (11): 1387-1392
[13] Cui S, Liu H B, Gan L B, Li Y L, Zhu D B. Adv. Mater., 2008, 20 (15): 2918-2925
[14] Zhang S G, Li G F. Biotechnol. Adv., 2002, 55 (20): 321-326
[15] Corinne L D, Thomas B, Peter S. J. Supramol. Chem., 2001, 23 (15): 39-52
[16] Bowden N B, Weck M, Choi I S. Acc. Chem. Res., 2001, 34 (3): 231-238
[17] Barrio J, Oriol L, Sánchez C, Serrano J, Cicco A, Keller P, Li M H. J. Am. Chem. Soc., 2010, 132 (11): 3762-3769
[18] Taton K S, Guire P E. Colloids Surfaces B: Biointerfaces, 2002, 123-132
[19] Gan H Y, Liu H B, Li Y J, Zhao Q, Li Y L, Wang S, Jiu T G, Wang N, He X R, Yu D P, Zhu D B. J. Am. Chem. Soc., 2005, 127 (36): 12452-12453
[20] Park S J, Kang S G, Fryd M, Saven J G, Park S. J. Am. Chem. Soc., 2010, 132 (29): 9931-9933
[21] Ren L X, Hardy C G, Tang C B. J. Am. Chem. Soc., 2010, 132 (26): 8874-8875
[22] Tung Y C, Wu W C, Chen W C. Macromol. Rapid Commun., 2006, 78 (27): 1838-1844
[23] Prasanthkumar S, Saeki A, Seki S, Ajayaghosh A. J. Am. Chem. Soc., 2010, 132 (28): 8866-8867
[24] Huang C S, Li Y L, Song Y L, Li Y J, Liu H B, Zhu D B. Adv. Mater., 2010, 22 (32): 3532-3536
[25] Huang Y Q, Fan Q L, Liu X F, Fu N N, Huang W. Langmuir, 2010, 26 (24): 19120-19128
[26] González-Rodríguez D, Janssen P G A, Martin-Rapún R, De Cat I, De Feyter S, Schenning A P H J, Meijer E W. J. Am. Chem. Soc., 2010, 132 (13): 4710-4719
[27] Hagberg E C, Goodridge B, Sheares V V. Macromolecules, 2004, 37: 3642-3650
[28] Cordas C M, Viana A S, Leupold S, Montforts F P, Abrantes L M. Electrochem. Commun., 2003, 5 (1): 36-41
[29] Pu K Y, Li K, Liu B. Chem. Mater., 2010, 24 (22): 6736-6741
[30] Mu X Y, Song W F, Zhang Y, Ye K Q, Zhang H Y, Wang Y. Adv. Mater., 2010, 22 (1): 115-122
[31] Meng Y, Gu D, Zhang F Q, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Andreas S, Zhao D Y. Chem. Mater., 2006, 18 (18): 4447-4464
[32] Li H B, Liu Q T, Wu L X. J. Phys. Chem. B, 2005, 109 (33): 2855-2861
[33] Li H B, Song B, Wu L X. J. Colloid Interf. Sci., 2005, 290 (5): 557-563
[34] Lu S, Liu T X, Ke L, Ma D G, Cha S G, Huang W. Macromolecules, 2005, 38 (20): 8494-8502
[35] Jagannathan R, Irvin G, Blanton T, Jagannathan S. Adv. Funct. Mater., 2006, 16 (14): 747-753
[36] Zhang X J, Yuan G D, Li Q S, Wang B, Zhang X H, Zhang R Q, Chang J C, Lee C S, Lee S T. Chem. Mater., 2008, 20 (20): 6945-6950
[37] Lei Y L, Liao Q, Fu H B, Yao J N. J. Am. Chem. Soc., 2010, 132 (6): 1742-1743
[38] Qiu Y F, Chen P L, Liu M H. J. Am. Chem. Soc., 2010, 132 (6): 1965-1967
[39] Mbenkum B N, Ortiz A D, Gu L, Aken P A, Schutz G. J. Am. Chem. Soc., 2010, 132 (31): 10671-10673
[40] Luo Z X, Yang W S, Aidong P, Ying M, Fu H M, Yao J N. J. Phys. Chem. A, 2009, 113 (35): 2467-2472
[41] Liu X F, Liu H B, Zhou W D, Zheng H Y, Yin X D, Li Y L, Guo Y B, Zhu M, Ouyang C, Zhu D B, Xia E D. Langmuir, 2010, 26 (5): 3179-3185
[42] Hu Y X, Samanta D, Parelkar S S, Hong S W, Wang Q, Russell T P, Emrick T. Adv. Funct. Mater., 2010, 20 (20): 3603-3612
[43] Liu J C, Bai H W, Wang Y J. Adv. Funct. Mater., 2010, 20 (23): 4175-4181
[44] Sun X P, Ko S H, Zhang C, Ribbe A E, Mao C. J. Am. Chem. Soc., 2009, 131 (37): 13248-13249
[45] Li K, Liu Y T, Pu K Y, Liu B. Adv. Funct. Mater., 2011, 21 (2): 202-210
[46] Shi Z Q, Li Y L, Gong H F, Liu M H, Xiao S X, Liu H B, Li H M, Xiao S Q, Zhu D B. Organic Lett., 2002, 4 (7): 1179-1182
[47] Xiao X, Wu Y G, Sun M G, Zhou J J, Bo Z S, Li L, Chan C M. J. Polym. Sci. Pol. Chem., 2008, 46 (10): 574-584
[48] Xie H L, Jie C K, Yu Z Q, Liu X B, Zhang H L, Shen Z H, Chen E Q, Zhou Q F. J. Am. Chem. Soc., 2010, 132 (23): 8071-8080
[49] Apel C L, Deamer D W, Mautner M N. Biochim. Biophys. A, 2002, 155 (9): 658-660
[50] Alessandro C, Chiara M, Nicola P. Tetrahedron Letters, 2002, 43 (21): 7311-7316
[51] Xiang J H, Zhu P X, Zeng D Y, Masuda Y. Langmuir, 2004, 20 (22): 3278-3283
[52] Valsesia A, Colpo P, Meziani T. Langmuir, 2006, 22 (4): 1763-1767
[53] Lin C, Kagan C R, Tzanetos N P, Dracopoulos V, Deimede V A. J. Am. Chem. Soc., 2009, 131 (1): 336-337
[54] Han J T, Zheng Y L, Cho J H. J. Phys. Chem. B, 2005, 109 (44): 20773-20778
[55] Yuan Z Y, Ren T Z, Azioune A. Catalysis Today, 2008, 105 (3): 647-654
[56] Huang L M, Wang Z B, Sun J, Deng Z Y. J. Am. Chem. Soc., 2010, 132 (10): 3530-3531
[57] Marty L T, Bonnot A M, Bonhomme A, Cicco A D. Small, 2006, 55 (2): 110-115

[1] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[2] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[3] 史丹丹, 张西沙, 张德清. 含有七元碳环的有机共轭分子在光电材料中的应用[J]. 化学进展, 2018, 30(5): 658-672.
[4] 杜瑾, 廖睿, 张幸林, 孙会彬, 黄维. 电致荧光变色材料的主要分类及变色机理[J]. 化学进展, 2018, 30(2/3): 286-294.
[5] 代林林, 李伟, 曹军, 李坚, 刘守新. 纳米晶纤维素手性向列型液晶相结构的形成、调控及应用[J]. 化学进展, 2015, 27(7): 861-869.
[6] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[7] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[8] 吴伟兵, 张磊. 纳晶纤维素的功能化及应用[J]. 化学进展, 2014, 26(0203): 403-414.
[9] 龚洁, 沈清明, 范曲立, 黄维. 荧光有机小分子纳米材料的合成及其应用[J]. 化学进展, 2013, 25(11): 1928-1941.
[10] 张胜兰 陈润锋 姜鸿基 刘斌 黄维. 含磷有机电致发光材料*[J]. 化学进展, 2010, 22(05): 898-904.
[11] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
[12] 李倩倩, 李振, 秦金贵. 新型含吲哚基团的光电功能材料*[J]. 化学进展, 2009, 21(12): 2578-2588.
阅读次数
全文


摘要

有机共轭分子自组装方法