English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 8-16 前一篇   后一篇

• 本期推荐 •

宽光谱太阳能电池

李承辉1,2, 王锴1, 郑玮1, 王致祥1, 刘建1, 游效曾1,2*   

  1. 1. 南京大学化学化工学院 配位化学国家重点实验室 南京微结构国家实验室 南京 210093;
    2. 光伏科学与技术国家重点实验室 常州天合光能有限公司 常州 213022
  • 收稿日期:2011-08-01 修回日期:2011-09-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2011CB933300, 2007CB925100, 2011CB80870)、国家自然科学基金项目(No.21021062, 91022031)和常州天合光能有限公司院士工作站项目资助

Broad-Spectrum Solar Cell

Li Chenghui1,2, Wang Kai1, Zheng Wei1, Wang Zhixiang1, Liu Jian1, You Xiaozeng1,2*   

  1. 1. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 China;
    2. State Key Laboratory of PV Science & Technology, Changzhou Trina Solar Energy Co. Ltd, Changzhou 213022, China
  • Received:2011-08-01 Revised:2011-09-01 Online:2012-01-24 Published:2011-11-22
太阳能电池的光谱响应特性和光电转换效率与光伏材料的微观能带结构及其宏观组装方式密切相关。无论使用哪种光伏材料,普通单结或单层太阳能电池都只能对部分波段的太阳光进行有效利用。宽光谱研究的目标是要使太阳能电池更好地利用太阳光谱所覆盖的全部波段范围的能量,从而提高太阳能电池光电转换效率。本文从化学角度综述了实现宽光谱太阳能电池的基本方法和当前的研究进展,其中包括叠层太阳能电池、中间带太阳能电池、量子点太阳能电池、热光伏太阳能电池、上转换和下转换、分子基柔性太阳能电池等方法。
Due to the energy crisis, utilization of renewable energy sources has been intensively investigated in recent years. Among a variety of renewable energy sources, solar energy is a sustainable alternative option that can be utilized in various ways and can be used for many applications. Converting directly the sunlight to electricity through solar cells is the most common and effective way to use solar energy. The spectral response and overall photo-to-electric energy conversion efficiency of solar cells are closely correlated to the micro band-gap structure and macro assembly process of photovoltaic materials. A solar cell can effectively utilize photons with energy close to the semiconductor band gap Eg. Photons with energy smaller than the band gap are not absorbed. On the other hand, photons with energy larger than the band gap are absorbed, but the excess energy -Eg is not used effectively due to thermalization. Therefore, a normal single junction or single layer solar cell can only use part of the solar radiation no matter what kind of photovoltaic materials are used. Broad-spectrum solar cell aims to use most of the solar energy effectively via several structures or methods: Tandem solar cells, intermediate-band solar cells, quantum dot solar cells, thermo-photovoltaic solar cells, up- and down-conversion, and molecule based flexible solar cells. During the past few years, many new concepts and results have been emerged in industrial manufactures and laboratory fundamental researches. A survey of recent work is thus necessary to get better insight into this field. This paper summarizes briefly the method and recent progress of broad-spectrum solar cells in viewpoint of chemistry. Contents
1 Introduction
2 Tandem solar cell
3 Intermediate band solar cell
4 Quantum dot solar cell
5 Thermo-photovoltaic solar cell
6 Up- and down-conversion
7 Molecule based flexible solar cell
8 Summary

中图分类号: 

()
[1] Klampaftis E, Ross D, McIntosh K R, Richards B S. Sol. Energy Mater. Sol. Cells, 2009, 93: 1182-1194

[2] Luque A, Martí A, Bett A, Andreev V M, Jaussaud C, van Roosmalen J A M, Alonso J, Räuber A, Strobl G, Stolz W, Algora C, Bitnar B, Gombert A, Stanley C, Wahnon P, Conesa J C, van Sark W G J H M, Meijerink A, van Klink G P M, Barnham K, Danz R, Meyer T, Luque-Heredia I, Kenny R, Christofides C, Sala G., Benítez P. Sol. Energy Mater. Sol. Cells, 2005, 87: 467-479

[3] Guter W, Schöne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W, Dimroth F. Appl. Phys. Lett., 2009, 94(22): art. no. 223504

[4] Karam N H, King R R, Haddad M, Ermer J H, Yoon H, Cotal H L, Sudharsanan R, Eldredge J W, Edmondson K, Joslin D E, Krut D D, Takahashi M, Nishikawa W, Gillanders M, Granata J, Hebert P, Cavicchi B T, Lillington D R. Sol. Energy Mater. Sol. Cells, 2001, 66: 453-466

[5] Tanabe K. Energies, 2009, 2: 504-530

[6] McCambridge J D, Steiner M A, Unger B A, Emery K A, Christensen E L, Wanlass M W, Gray A L, Takacs L, Buelow R, McCollum T A, Ashmead J W, Schmidt G R, Haas A W, Wilcox J R, Meter J V, Gray J L, Moore D T, Barnett A M, Schwartz R J. Prog. Photovolt.: Res., Appl., 2011, 19: 352-360

[7] Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D. Prog. Photovolt. Res. Appl., 2011, 19: 565-572

[8] Takakura H. Jpn. J. Appl. Phys., 1992, 31: 2394-2399

[9] Bailat J, Fesquet L, Orhan J, Djeridane Y, Wolf B, Madliger P, Steinhauser J, Benagli S, Borrello D, Castens L, Monteduro G, Marmelo M, Dehbozorghi B, Valltat-Sauvain E, Multone X, Romang D, Boucher J, Meier J, Kroll U. 25th European Photovoltaic Solar Energy Conference, Valencia, Sept., 2010

[10] Vanecek M, Babchenko O, Purkrt A, Holovsky J, Neykova N, Poruba A, Remes Z, Meier J, Kroll U. Appl. Phys. Lett., 2011, 98: art. no. 163503

[11] Cuadra L, Martí A, Luque A. Thin Solid Films, 2004, 451/452: 593-599

[12] Martí A, Antolín E, Stanley C R A, Farmer C D, López N, Díaz P, Cánovas E, Linares P G, Luque A. Phys. Rev. Lett., 2006, 97: art. no. 247701

[13] Zhou D, Vullum P E, Sharma G, Thomassen S F, Holmestad R, Reenaas T W, Fimland B O. Appl. Phys. Lett., 2010, 96: art. no. 083108

[14] Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P. Phys. Rev. Lett., 2003, 91: art. no. 246403

[15] Wang W, Lin A S, Phillips J D. Appl. Phys. Lett., 2009, 95: art. no. 011103

[16] López N, Reichertz L A, Yu K M, Campman K, Walukiewicz W. Phys. Rev. Lett., 2011, 106: art. no. 028701

[17] Luque A, Martí A, Nozik A J. MRS Bull., 2007, 32: 236-241

[18] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. J. Am. Chem. Soc., 2008, 130: 4007-4015

[19] Sablon K A, Little J W, Mitin V, Sergeev A, Vagidov N, Reinhardtz K. Nano Lett., 2011, 11: 2311-2317

[20] Cho E C, Green M A, Conibeer G, Song D, Cho Y H, Scardera G, Huang S, Park S, Hao X J, Huang Y, Dao L V. Adv. OptoElectron., 2007, art. ID. 69578

[21] Löper P, Künle M, Hartel A, Goldschmidt J C, Peters M, Janz S, Hermle M, Glunz S W, Zacharias M. Quantsol, 2009, March 8th-14th, 2009

[22] Hao X J, Cho E C, Scardera G, Shen Y S, Bellet-Amalric E, Bellet D, Conibeer G, Green M A. Sol. Energy Mater. Sol. Cells, 2009, 93: 1524-1530

[23] Wang X, Koleilat G I, Tang J, Liu H, Kramer I J, Debnath R, Brzozowski L, Barkhouse D A R, Levina L, Hoogland S, Sargent E H. Nat. Photonics, 2011, 5(8): 480-484

[24] Harder N P, Würfel P S. Semicond. Sci. Technol., 2003, 18: 151-157

[25] Coutts T J. Renew. Sustain. Energy Rev., 1999, 3: 78-184

[26] Nelson R E. Semicond. Sci. Technol., 2003, 18: 141-143

[27] Coutts T J, Guazzoni G, Luther J. Semicond. Sci. Technol., 2003, 18: 144-150

[28] Lin K L, Catchpole K R, Trupke T, Green M A, Aberle A G, Corkish R. Conference Record of the Twenty Ninth IEEE Photovoltaic Specialists Conference, 2002. 939-942

[29] Wang C A, Huang R K, Shiau D A, Connors M K, Murphy P G, O’Brien P W, Anderson A C, DePoy D M, Nichols G, Palmisiano M N. Appl. Phys. Lett., 2003, 83: 1286-1288

[30] Cederberg J G., Blaich J D, Girard G R, Lee S R, Nelson D P, Murray C S. J. Crystal Growth, 2008, 310: 3453-3458

[31] Mauk M G, Andreev V M. Semicond. Sci. Technol., 2003, 18: S191-S201

[32] Schwede J W, Bargatin I, Riley D C, Hardin B E, Rosenthal S J, Sun Y, Schmitt F, Pianetta P, Howe R T, Shen Z X, Melosh N A. Nat. Mater., 2010, 9: 762-767

[33] Shpaisman H, Niitsoo O, Lubomirsky I, Cahen D. Sol. Energy Mater. Sol. Cells, 2008, 92: 1541-1546

[34] Huang C H (ED.). Rare Earth Coordination Chemistry: Fundamentals and Applications. John Wiley & Sons Inc., 2010

[35] Cheng Z, Su F, Pan L, Cao M, Sun Z. J. Alloys Compd., 2010, 494: 7-10

[36] Donne A L, Acciarri M, Narducci D, Marchionna S, Binetti S. Prog. Photovotl: Res. Appl., 2009, 17: 519-525

[37] Shalava A, Richardsc B S, Green M A. Sol. Energy Mater. Sol. Cells, 2007, 91: 829-842

[38] Trinh M T, Houtepen A J, Schins J M, Hanrath T, Piris J, Knulst W, Goossens A P L M, Siebbeles L D A. Nano Lett., 2008, 8(6): 1713-1718

[39] Fischer S, Goldschmidt J C, Löper P, Bauer G H, Brüggemann R, Krämer K, Biner D, Hermle M, Glunz S W. Appl. Phys., 2010, 108: art. no. 044912

[40] de Wild J, Meijerink A, Rath J K, van Sark W G J H M, Schropp R E I. Sol. Energy Mater. Sol. Cells, 2010, 94: 1919-1922

[41] Lahoz F, Pérez-Rodríguez C, Hernández S E, Martín I R, Lavín V, Rodríguez-Mendoza U R. Sol. Energy Mater. Sol. Cells, 2011, 95: 1671-1677

[42] 游效曾(You X Z). 分子材料: 光电功能化合物(Molecular Based Material-Opto-Electronics Functional Compounds). 上海: 上海科学技术出版社(Shanghai: Shanghai Scientific and Technical Publishers), 2001

[43] Heeger A J, Sariciftci N S, Namdas E B (帅志刚(Shuai Z G), 曹镛(Cao Y)译). 半导性与金属性聚合物(Semiconducting and Metallic Polymers). 北京: 科学出版社(Beijing: Science Press)

[44] Baldo M A, OBrien D F, You Y J, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151-154

[45] Zou D C, Wang D, Chu Z Z, Lv Z B, Fan X. Coord. Chem. Rev., 2010, 254(9/10): 1169-1178

[46] Yoon J, Baca A J, Park S I, Elvikis P, Geddes J B, Li L F, Kim R H, Xiao J L, Wang S D, Kim T H, Motala M J, Ahn B Y, Duoss E B, Lewis J A, Nuzzo R G, Ferreira P M, Huang Y G, Rockett A, Rogers J A. Nat. Mater., 2009, 7 (11): 907-915

[47] Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Grätzel M. J. Am. Chem. Soc., 2001, 123: 1613-1624

[48] Burdzinski G T, Chisholm M H, Chou P T, Chou Y H, Feil F, Gallucci J C, Ghosh Y, Gustafson T L, Ho M L, Liu Y, Ramnauth R, Turro C. PNAS, 2008, 105(40): 15247-15252

[49] Xue Z L, Shen Z, Mack J, Kuzuhara D, Yamada H, Okujima T, Ono N, You X Z, Kobayashi N. J. Am. Chem. Soc., 2008, 130: 16478-16479

[50] Chen Y, Liu W, Jin J S, Liu B, Zou Z G, Zuo J L, You X Z. J. Organomet. Chem., 2009, 694(5): 763-770

[51] Hu B, Fu S J, Xu F, Tao T, Zhu H Y, Cao K S, Huang W, You X Z. J. Org. Chem., 2011, 76(11): 4444-4456

[52] Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Neoc-le C H, Decoppet J D, Tsai J H, Grätzel C, Wu C G, Zakeereddin S M, Grätzedl M. ACS Nano, 2009, 3: 3103-3109

[53] Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin S M, Grätzel M. Nat Mater., 2008, 7: 626-630

[54] Seo J H, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger A J, Bazan G C. J. Am. Chem. Soc., 2011, 133: 8416-8419

[55] Chen J W, Cao Y. Acc. Chem. Res., 2009, 42(11): 1709-1718

[56] http://www.heliatek.com, Nov. 11th, 2010.[2011-06]

[57] Rowan B C, Wilson L R, Richards B S. IEEE J. Sel. Top. Quant. Electron., 2008, 14(5): 1312-1322

[58] de Docr D K G. SPIE Newsroom, 21. April 2010 doi: 10.1117/2.1201004.002895

[59] Currie M J, Mapel J K, Heidel T D, Goffri S, Baldo M A. Science, 2008, 321: 226-228
[1] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[2] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[3] 王阳, 胡珀, 周帅, 傅佳骏. 稀土上转换发光纳米材料的防伪安全应用[J]. 化学进展, 2021, 33(7): 1221-1237.
[4] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[5] 徐彦乔, 陈婷, 王连军, 江伟辉, 江莞, 谢志翔. Ⅰ-Ⅲ-Ⅵ 族量子点的制备及其在照明显示领域的应用[J]. 化学进展, 2019, 31(9): 1238-1250.
[6] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[7] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[8] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[9] 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 碳量子点激发依赖荧光特性的机理、调控及应用[J]. 化学进展, 2018, 30(8): 1186-1201.
[10] 范鸿川, 杨东, 段鹏飞. 超分子组装体系中基于三重态-三重态湮灭的上转换发光[J]. 化学进展, 2018, 30(7): 879-887.
[11] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[12] 翟彩华, 陈志良, 吕沙沙, 林毅*, 张志淩, 庞代文. 金属增强量子点荧光[J]. 化学进展, 2017, 29(8): 814-823.
[13] 刘康, 高冠斌*, 孙涛垒*. β-HgS量子点的制备、性质及应用[J]. 化学进展, 2017, 29(7): 776-784.
[14] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[15] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
阅读次数
全文


摘要

宽光谱太阳能电池