English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 47-53 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

动力锂离子电池正极材料磷酸钒锂制备方法

李月姣1,2, 洪亮1, 吴锋1,2*   

  1. 1. 北京理工大学化工与环境学院 环境科学工程北京重点实验室 北京 100081;
    2. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2011-05-01 修回日期:2011-06-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家重点基础研究发展计划(973) 项目(No.2009CB220100)、国家高技术研究发展计划(863)项目(No.2011AA11A235)和北京理工大学基础研究基金项目(No.3100012211111)资助

Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries

Li Yuejiao1,2, Hong Liang1, Wu Feng1,2*   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received:2011-05-01 Revised:2011-06-01 Online:2012-01-24 Published:2011-11-22

锂离子电池新型正极材料的开发是当前的研究热点,其中磷酸盐材料以其结构稳定、安全性能好及资源丰富等优点备受关注。磷酸钒锂理论能量密度可达500mWh/g,具有较高的电子离子导电性、理论充放电容量及充放电电压平台,被认为是一种极具竞争优势和应用前景的动力锂离子电池正极材料。传统磷酸钒锂合成方法有固相合成法、碳热还原法、溶胶凝胶法和水热合成法等,近年来,又出现了湿法固相配位法、微波固相合成法和流变相法等新型合成方法。本文简要介绍了磷酸钒锂的结构和性能特点,对磷酸钒锂制备方法的最新研究进展进行了较为全面的阐述,并详细介绍了本研究团队近年来在磷酸钒锂材料新型合成方法方面的探索成果。同时对各种合成方法的制备工艺及材料性能进行了对比分析,并探讨了当前存在的问题及未来的研究方向。

A considerable amount of effort has been invested to find new cathode materials suitable for rechargeable lithium batteries, and lithium transition metal phosphates have attracted wide attention because of their high structural stability, reliability and abundant resources. Lithium vanadium phosphate (LVP) has high energy density of 500mWh/g, high electron and ionic conductivity, high theoretical charge and discharge capacity, and high charge and discharge voltage plateau. It is considered as one of the most promising cathode materials for power lithium batteries. Lithium vanadium phosphate has been prepared by some traditional synthetic methods such as solid-state reaction route, carbon thermal reduction, sol-gel method and hydrothermal synthetic method, while in recent years several new synthetic methods, such as wet coordination method, microwave solid-state synthetic method, rheological phase method, have drawn researchers’ attention. In this paper, the structure and the characters of lithium vanadium phosphate are introduced. The recent research progress on synthesis study of lithium vanadium phosphate is systematically reviewed, and the results of our research team focused on the exploration of new preparation technology for lithium vanadium phosphate in recent years are elaborated. Furthermore, the preparing techniques and the material properties for each method are compared, and the current problems as well as the corresponding research directions are discussed.

Contents
1 Introduction
2 Struture and charge/discharge principle of LVP
3 Traditional synthetic method
3.1 Solid-state reaction route
3.2 Carbon thermal reduction
3.3 Sol-gel method
3.4 Hydrothermal synthesis method
4 New synthetic method
4.1 Wet coordination method
4.2 Microwave solid-state synthetic method
4.3 Rheological phase method
4.4 Other synthetic methods
5 Conclusion

中图分类号: 

()

[1] Han A R, Kim T W, Park D H, Hwang S J, Choy J H. J. Phys. Chem. C, 2007, 111: 11347-11352
[2] Zama K, Kumeuchi T, Enomoto S, Daidoji T. Nec Technical Journal, 2006, 1: 68-72
[3] Zama K, Suzuki S, Kasai M, Shioya T. Nec Technical Journal, 2009, 4: 86-89
[4] Zhang L, Zhang P X, Fan Z Z, Ren X Z, Zhang D Y, Liu K. Powder Technology and Application Ⅲ, 2011, 158: 262-272
[5] Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Electrochim. Acta, 2010, 55: 8821-8828
[6] Xie J L, Huang X A, Zhu Z B, Dai J H. Ceram. Int., 2010, 36: 2485-2487
[7] Doan T N L, Taniguchi I. J. Power Sources, 2011, 196: 1399-1408
[8] Hong J A, Wang F, Wang X L, Graetz J. J. Power Sources, 2011, 196: 3659-3663
[9] Zhou X F, Wang F, Zhu Y M, Liu Z P. J. Mater. Chem., 2011, 21: 3353-3358
[10] Saravanan K, Balaya P, Reddy M V, Chowdari B V R, Vittal J J. Energy Environ. Sci., 2010, 3: 457-464
[11] Pan A Q, Liu J, Zhang J G, Xu W, Cao G Z, Nie Z M, Arey B W, Liang S Q. Electrochem. Commun., 2010, 12: 1674-1677
[12] Marschilok A C, Takeuchi K J, Takeuchi E S. Electrochem. Solid-State Lett., 2009, 12: A5-A9
[13] Park C, Park S B, Oh S H, Jang H, Cho W I. Bull. Korean Chem. Soc., 2011, 32: 836-840
[14] Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K. Solid State Ionics, 2000, 135: 137-142
[15] Goodenough J B, Manivannan V, Padhi A K. J. Electrochem. Soc., 1998, 145: 1518-1520
[16] Huang B, Fan X P, Zheng X D, Lu M. J. Alloys Compd., 2011, 509: 4765-4768
[17] Jiang B Q, Hu S F, Wang M W, Ouyang X P, Gong Z Y. Rare Metals, 2011, 30: 115-119
[18] 王秋霞(Wang Q X), 马化龙(Ma H L). 矿产保护与利用(Conservation and Utilization of Mineral Resources), 2009, (5): 47-50
[19] Cahill L S, Chapman R P, Britten J F, Goward G R. J. Phys. Chem. B, 2006, 110: 7171-7177
[20] Saidi M Y, Barker J, Huang H, Swoyer J L, Adamson G. Electrochem. Solid-State Lett., 2002, 5(7): A149-A151
[21] Saidi M Y, Barker J, Huang H, Swoyer J L, Adamson G. J. Power Sources, 2003, 119: 266-272
[22] Yang G, Ji H M, Liu H D, Qian B, Jiang X F. Chem. Mater., 2010, 55: 3669-3680
[23] Padhi A K, Nanjundaswamy K S, Masquelier C, Goodenough J B. J. Electrochem. Soc., 1997, 144: 2581-2586
[24] Wang L, Jiang X Q, Li X, Pi X Q, Ren Y, Wu F. Electrochim. Acta, 2010, 55: 5057-5062
[25] Wang L, Huang Y D, Jiang R R, Jia D Z. Electrochim. Acta, 2007, 52: 6778-6783
[26] Bai Y, Wu C, Wu F, Yang L X, Wu B R. Electrochem. Commun., 2009, 11: 145-148
[27] Gao X P, Yang H X. Energy Environ. Sci., 2010, 3: 174-189
[28] Wang L, Liu J, Yang G L, Zhang X F, Yan X D, Pan X M, Wang R S. Electrochim. Acta, 2009, 54: 6451-6454
[29] Qiao Y Q, Wang X L, Zhou Y, Xiang J Y, Zhang D, Shi S J, Tu J P. Electrochim. Acta, 2010, 56: 510-516
[30] Zhai J, Zhao M S, Wang D D, Qiao Y Q. J. Alloys Compd., 2010, 502: 401-406
[31] Zhang L, Wang X L, Xiang J Y, Zhou Y, Shi S J, Tu J P. J. Power Sources, 2010, 195: 5057-5061
[32] Dai C S, Chen Z Y, Jin H Z, Hu X G. J. Power Sources, 2010, 195: 5775-5779
[33] Zhong S K, Zhao B, Li Y H, Liu Y P, Liu J Q, Li F P. Journal of Wuhan University of Technology(Materials Science Edition), 2009, 24: 343-346
[34] Fu P, Zhao Y M, Dong Y Z, An X N, Shen G P. Electrochim. Acta, 2006, 52: 1003-1008
[35] Jiang T, Wang C Z, Chen G, Chen H, Wei Y J, Li X. Solid State Ionics, 2009, 180: 708-714
[36] Chen Z Y, Dai C S, Wu G, Nelson M, Hu X G, Zhang R X, Liu J S, Xia J C. Electrochim. Acta, 2010, 55: 8595-8599
[37] Wang L J, Zhou X C, Guo Y L. Chem. Mater., 2010, 195: 2844-2850
[38] Tang A P, Wang X Y, Yang S Y, Cao J Q. J. Appl. Electrochem., 2008, 38: 1453-1457
[39] Zhu X J, Liu Y X, Geng L M, Chen L B, Liu H X, Cao M H. Chem. Mater., 2008, 179: 1679-1682
[40] Tang A P, Wang X Y, Yang S Y. Mater. Lett., 2008, 62: 3676-3678
[41] Zhou X C, Liu Y M, Guo Y L. Electrochim. Acta, 2009, 54: 2253-2258
[42] Huang J S, Yang L, Liu K Y, Tang Y F. J. Power Sources, 2010, 195: 5013-5018
[43] Fu P, Zhao Y M, An X N, Dong Y Z, Hou X M. Electrochim. Acta, 2007, 52: 5281-5285
[44] Li Y Z, Zhou Z, Ren M M, Gao X P, Yan J. Electrochim. Acta, 2006, 51: 6498-6502
[45] Li Y Z, Zhou Z, Gao X P, Yan J. Electrochim. Acta, 2007, 52: 4922-4926
[46] Zhu X J, Liu Y X, Geng L M, Chen L B. J. Power Sources, 2008, 184: 578-582
[47] Huang Y D, Li J, Jia D Z. J. Colloid Interface Sci., 2005, 286: 263-267
[48] Chen J J, Vacchio M J, Wang S J, Chernova N, Zavalij P Y, Whittingham M S. Solid State Ionics, 2008, 178: 1676-1693
[49] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T. Electrochim. Acta, 2008, 54: 623-627
[50] 王联(Wang L). 北京理工大学博士论文(Doctoral Dissertation of Beijing Institute of Technology), 2009
[51] Wang L, Li X, Jiang X Q, Pan F S, Wu F. Solid State Sci., 2010, 12: 1248-1252
[52] Yang G, Liu H D, Ji H M, Chen Z Z, Jiang X F. Electrochim. Acta, 2009, 55: 2951-2957
[53] 刘丽英(Liu L Y), 姜霖琳(Jiang L L), 吴辉强(Wu H Q), 张海燕(Zhang H Y), 田彦文(Tian Y W). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2010, 39: 364-368
[54] Xiao H, Zhan H, Zhou Y H. Mater. Lett., 2004, 58: 1620-1624
[55] Sun J T, Yuan L J, Zhang K L, Wang D L. Thermochim. Acta, 2000, 343: 105-109
[56] Huang F, Yuan Z Y, Zhan H, Zhou Y H, Sun J T. Mater. Lett., 2003, 57: 3341-3345
[57] 李丽(Li L), 李国华(Li G H), 王石泉(Wang S Q), 冯传启(Feng C Q). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26: 126-131
[58] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T. Electrochim. Acta, 2008, 53: 2232-2237
[59] Wang L, Zhang L C, Lieberwirth I, Xu H W, Chen C H. Electrochem. Commun., 2010, 12: 52-55

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[5] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[6] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[7] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[8] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[9] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[10] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[11] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[12] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[13] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[14] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[15] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.