English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 39-46 前一篇   后一篇

• 综述与评论 •

低温催化法制备石墨化碳空心球

靳权, 刘应亮*, 武拥建, 谢春林, 肖勇   

  1. 暨南大学化学系 暨南大学纳米化学研究所 广州 510632
  • 收稿日期:2011-05-01 修回日期:2011-06-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家-广东联合基金项目(No.U0734005)、中央高校基本科研业务费专项资金项目(No.21610102)、国家自然科学基金重点项目(No.21031001)、广东省高等学校科技创新重点项目(No.cxzd1014)和国家自然科学青年基金项目(No.20906037)资助

Preparation of Graphitized Carbon Hollow Spheres by Low-Temperature Catalytic Approach

Jin Quan, Liu Yingliang*, Wu Yongjian, Xie Chunlin, Xiao Yong   

  1. Department of Chemistry, Institute of Nanochemistry, Jinan University, Guangzhou 510632, China
  • Received:2011-05-01 Revised:2011-06-01 Online:2012-01-24 Published:2011-11-22

石墨化碳空心球因具有密度小、稳定性好和可填充中空结构等特点,受到了研究者的广泛关注。本文结合国内外的研究进展,综述了近年来发展起来的采用过渡金属如铁、钴、镍等为催化剂,低温(<1 000℃)催化法合成石墨化碳空心球的最新研究进展。介绍了低温催化法提高碳空心球石墨化程度的机理,说明了石墨化碳空心球的表征方法,展望了石墨化碳空心球的应用前景。最后指出了相关研究中有待解决的问题。

Graphitized carbon hollow spheres exhibit excellent properties such as low density, good thermal and chemical stability and available hollow interior, which lead to extensive attention. In this review, we summarize the latest development of synthesizing graphitized carbon hollow spheres by low-temperature (<1 000℃) catalytic method with catalysts, such as Fe, Co, Ni and so on. The mechanism of low-temperature catalytic approaches is introduced. The characterizing methods of graphitized carbon hollow spheres and their applications are presented. Additionally, the challenges of the synthesis of graphitized carbon hollow spheres are discussed, and the problems still should be resolved are pointed out.

Contents
1 Introduction
2 Preparation of graphitized carbon hollow spheres by low-temperature catalytic approaches
2.1 Template method
2.2 Solvothermal method
2.3 Microwave method
3 Explaination of the mechanism of low-temperature catalytic approaches
4 Characterization methods of graphitized carbon hollow spheres
5 Applications of graphitized carbon hollow spheres
6 Conclusions and outlook

中图分类号: 

()

[1] Yong Z, Lei J. Adv. Mater., 2009, 21: 1-18
[2] Iijima S. Nature, 1991, 354 (6348): 56-58
[3] Ugarte D. Nature, 1992, 359: 707-709
[4] Krishnan A, Dujardin E, Treacy M M J. Nature, 1997, 388: 451-454
[5] Ajayan P M, Nugent J M, Siegel R W, Wei B. Nature, 2000, 404: 243-245
[6] Chen X Q, Motojima S. Carbon, 1999, 37: 1817-1823
[7] Chu Y C, Xu D S, Xu C J, Dun N, Ai B Y, Zhi G L, Ji G L. Nanoscale Research Letter, 2009, 4: 971-976
[8] Hu G, Ma D, Cheng M J, Liu L, Bao X H. Chem. Commun., 2002, 1948-1949
[9] Burket C L, Rajagopalan R, Foley H C. Carbon, 2007, 45: 2307-2310
[10] Zheng M T, Liu Y L, Zhao S, He W Q, Xiao Y, Yuan D S. Inorganic Chemistry, 2010, 49: 8674-8683
[11] Hishiyama Y, Inagaki M, Kimura S, Yamada S. Carbon, 1974, 12: 249-254
[12] Zaldivar R J, Rellick G S. Carbon, 1991, 29: 1155-1163
[13] Noda T, Kato H. Carbon, 1965, 3: 289-297
[14] Inagaki M, Oberlin A, Fenton S. High Temperature High Pressures, 1977, 9: 453-460
[15] Walter E C, Beetz T, Sfeir M Y, Brus L E, Steigerwald M L. J. Am. Chem. Soc., 2006, 128: 15590-15591
[16] Zhao M S, Jian N W. Adv. Mater., 2008, 20: 1071-1075
[17] Liu J W, Xu L Q, Zhang W, Lin W J, Chen X Y, Wang Z H, Qian Y T. J. Phys. Chem. B, 2004, 108: 20090-20094
[18] Qi J, Yan S Y, Jiang Q, Liu Y, Sun G Q. Carbon, 2010, 48: 163-169
[19] Lee K T, Jung Y S, Oh S M. J. Am. Chem. Soc., 2003, 125: 5652-5653
[20] White R J, Tauer K, Antonietti M, Titirici M M. J. Am. Chem. Soc., 2010, 132: 17360-17363
[21] Luo N, Li X J, Wang X H, Yan H H, Zhang C J, Wang H T. Carbon, 2010, 48: 3858-3863
[22] Sevilla M, Sanchis C, Valdes-Solis T, Morallon E, Fuertes A B. Carbon, 2008, 46: 931-939
[23] Yang S J, Cho J H, Oh G H, Nahm K S, Park C R. Carbon, 2009, 47: 1585-1591
[24] Lu A H, Li W C, Hao G P, Spliethoff B, Bongard H J, Schaack B B, Schuth F. Angew. Chem. Int. Ed., 2010, 49: 1615-1618
[25] Garvie L A J. Carbon, 2006, 44: 158-160
[26] Li G D, Guo C L, Sun C H, Ju Z C, Yang L S, Xu L Q, Qian Y T. J. Phys. Chem. C, 2008, 112: 1896-1900
[27] Xiong J Y, Xie Y, Li Z Q, Wu C Z, Zhang R. Chem. Commun., 2003, (7): 904-905
[28] Chen K, Wang C L, Ma D, Huang W X, Bao X H. Chem. Commun., 2008, 24: 2765-2767
[29] Oberlin A. Carbon, 2002, 40: 7-24
[30] Hung C C. Carbon, 1995, 33: 315-322
[31] 李玉敏(Li Y M). 炭素(Carbon), 1982, 2: 18-20
[32] Dhakate S R, Mathur R B, Bahl O P. Carbon, 1997, 35: 1753-1756
[33] Oya A, Takabatake M, Otani S, Marsh H. Fuel, 1984, 63: 747-751
[34] Oya A, Otani S. Carbon, 1978, 16: 153-154
[35] Zheng M T, Liu Y L, Jiang K M, Xiao Y, Yuan D S. Carbon, 2010, 48: 1224-1233
[36] Sevilla M, Fuertes A B. Carbon, 2006, 44: 468-474
[37] Xiao Y, Liu Y L, Cheng L Q, Yuan D S, Zhang J X, Gu Y L, Sun G H. Carbon, 2006, 44: 1589-1591
[38] 王茂章(Wang M Z), 杨全红(Yang Q H), 成会明(Cheng H M). 炭素技术(Carbon Techniques), 2001, l: 23-28
[39] Franklin R E. Acta Crystallographica, 1951, 4: 253-261
[40] 稻垣道夫(Dao H D F), 刘洪波(Liu H B). 炭素技术(Carbon Techniques), 1991, 6: 19-24
[41] 稻垣道夫(Dao H D F), 刘洪波(Liu H B). 炭素技术(Carbon Techniques), 1991, 5: 38-43
[42] Inagaki M, Oberlin A F. High Temperature High Pressures, 1977, 9: 453-460
[43] Oya A, Otani S. Carbon, 1979, 17: 125-129
[44] Weisweiler W, Subramanian N, Terwiesch B. Carbon, 1971, 9: 755-761
[45] Zaldivar R J, Rellick G S. Carbon, 1991, 29: 1155-1163
[46] Noda T, Kato H. Carbon, 1965, 3: 289-297
[47] Yoshio M, Wang H Y, Fukuda K J. Angew. Chem., 2003, 115: 4335-4338
[48] 程立强(Cheng L Q), 刘应亮(Liu Y L), 张静娴(Zhang J X), 袁定胜(Yuan D S), 徐常威(Xu C W), 孙广辉(Sun G H). 化学进展(Progress in Chemistry), 2006, 18: 1298-1304
[49] Lu A H, Li W C, Salabas E L, Spliethoff B, Schuth F. Chem. Mater., 2006, 18: 2086-2094
[50] Huang W C, Chun H H, Ping L K, Chien T H, Hsisheng T. Carbon, 2011, 49: 895-903
[51] Zhong Z Y, Xiong Z T, Sun L F, Luo J Z, Chen P, Wu X, Lin J, Tan K L. J. Phys. Chem. B, 2002, 106: 9507-9513
[52] Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M. Angew. Chem., 2006, 118: 7221-7224

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[5] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[6] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[7] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[8] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[9] 陈磊, 赵文, 易刚吉, 周建军, 袁爱华. 3d过渡金属单离子磁体[J]. 化学进展, 2019, 31(2/3): 337-350.
[10] 池晓汪, 吴群燕, 于吉攀, 张覃, 柴之芳, 石伟群. 锕系异核双金属化合物[J]. 化学进展, 2019, 31(10): 1341-1349.
[11] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[12] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[13] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[14] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[15] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.
阅读次数
全文


摘要

低温催化法制备石墨化碳空心球