English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 31-38 前一篇   后一篇

• 综述与评论 •

SiO2/聚合物核壳型杂化粒子及其空心结构的制备

黄平, 柴仕淦, 袁建军, 路国红, 杨婷婷*, 程时远*   

  1. 湖北大学材料科学与工程学院 武汉 430062
  • 收稿日期:2011-05-01 修回日期:2011-09-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家自然科学青年基金项目(No.51003025)和湖北省自然科学基金项目(No.2009CDB157)资助

Preparation of Silica/Polymer Core-Shell Hybrid Particles and Their Hollow Structures

Huang Ping, Chai Shigan, Yuan Jianjun, Lu Guohong, Yang Tingting*, Cheng Shiyuan*   

  1. Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • Received:2011-05-01 Revised:2011-09-01 Online:2012-01-24 Published:2011-11-22

SiO2/聚合物核壳型杂化粒子及其空心结构以其独特的形貌在药物控制释放、催化剂载体、生物医药等领域应用前景广阔,引起了人们的广泛关注。本文着重从乳液聚合法、仿生矿化法等制备方法角度阐述了SiO2/聚合物核壳型杂化粒子及其空心结构的研究进展。乳液聚合制备SiO2/聚合物核壳型杂化粒子简单易行,一般需要预先合成SiO2纳米粒子,其合成过程通常需要一些非理想的条件,如高温高压、极端pH、昂贵或有毒的有机试剂等,而且预先合成的SiO2粒子无法与聚合物实现100%匹配,即总有纯的聚合物粒子存在。相比之下,原位仿生矿化法制备SiO2杂化粒子不仅在环境条件下可进行,而且能够精确控制其纳米尺度的形态及分级有序结构。目前对材料科学家来讲,要使人工合成SiO2/聚合物杂化粒子实现像自然生物硅那样优异的性能,仍然是很大的挑战。

Core-shell silica/polymer hybrid micro- or nanoparticles and their corresponding hollow structures with unique morphology are of great interest because of their potential applications in drug delivery, catalysis carrier and nano-medicine. Their novel preparation procedures are still actively being studied. In this paper the recent progresses of their preparation in terms of emulsion polymerization and in situ biomimetic mineralization have been reviewed. Emulsion polymerization is a facile approach to design the complex structures of the core-shell SiO2/polymer particles, but requires to pre-prepare silica nanoparticles under environmentally unfriendly conditions, such as Stber method. Furthermore, the pre-prepared SiO2 nanoparticles can not completely match with polymer, thus some pure polymer particles are always obtained. In contrast, in situ biomimetic mineralization occurs in water under ambient conditions, producing exquisite hierarchical structures and multiple morphologies with precise nanoscale. It is still a big challenge for materials scientists to achieve the SiO2/polymer hybrid particles with excellent performance like the natural biological silicon.

Contents
1 Introduction
2 Emulsion polymerization
3 Biomimetic mineralization
4 Outlook

中图分类号: 

()

[1] Corma A, Díaz U, Arrica M, Fernández E, Ortega í. Angew. Chem., 2009, 121: 6365-6368
[2] Advincula M C, Patel P, Mather P T, Mattson T, Goldberg A J. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2009, 88B: 321-331
[3] Wan X J, Wang D, Liu S Y. Langmuir, 2010, 26 (19): 15574-15579
[4] Corma A, Moliner M, Daz-Cabanas M J, Serna P, Femenia B, Primo J, Garca H. New J. Chem., 2008, 32: 1338-1345
[5] Li Z Z, Wen L X, Shao L, Chen J F. J. Control. Rel., 2004, 98: 245-254
[6] Liu F, Wen L X, Li Z Z, Wen Y, Sun H Y, Chen J F. Materials Research Bulletin, 2006, 41: 2268-2275
[7] Zhang C, Hou T, Chen J F, Wen L X. Particuology, 2010, 8: 447-452
[8] Zhu Y F, Fang Y, Borchaedt L, Kaskel S. Microporous and Mesoporous Materials, 2011, 141 (1/3): 199-206
[9] Caruso F, Caruso R A, Möhwald H. Chem. Mater., 1999, 11: 3309-3314
[10] Caruso F. Adv. Mater., 2001, 13 (1): 11-22
[11] Vallés-Lluch A, Costa E, Gallego Ferrer G, Monleón Pradas M, Salmerón-Sánchez M. Composites Science and Technology, 2010, 70: 1789-1795
[12] Shin K, Kim J, Suh K. Journal of Colloid and Interface Science, 2010, 350: 581-585
[13] Kamata K, Lu Y, Xia Y N. J. Am. Chem. Soc., 2003, 12 : 2384-2385
[14] Ohno K, Akashi T, Huang Y, Tsujii Y. Macromolecules, 2010, 43(21) : 8805-8812
[15] Chen J C, Hu M, Zhu W D, Li Y P. Applied Surface Science, 2011, 257: 6654-6660
[16] Zou H, Wu S S, Shen J. Chem. Rev., 2008, 108 : 3893-3957
[17] Oh C, Lee Y G, Choi T S, Jon C U, Oh S G. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 349: 145-150
[18] Zhang K, Zheng L L, Zhang X H, Chen X, Yang B. Colloids and Surface A: Physicochem. Eng. Aspects, 2006, 277: 145-150
[19] Zeng Z, Yu J, Guo Z X. Journal of Wuhan University of Technology-Materials Science Edition, 2006, 21 (2): 136-138
[20] Chen Y Z, Guo Z X, Yu J, Zhan M S. Chinese Journal of Polymer Science, 2009, 27 (5): 629-637
[21] Monteil V, Stumbaum J, Thomann R, Mecking S. Macromolecules, 2006, 39 (6): 2056-2062
[22] Mahdavian A R, Ashjari M, Makoo A B. European Polymer Journal, 2007, 43: 336-344
[23] Pishvaei M, Tabrizi F F. Iranian Polymer Journal, 2010, 19 (9): 707-716
[24] Tissot I, Novat C, Lefebvre F, Bourgeat-Lami E. Macromolecules, 2001, 34: 5737-5739
[25] Tissot I, Reymond J, Lefebvre F, Bourgeat-Lami E. Chem. Mater., 2002, 14: 1325-1331
[26] Ugelsted J, EI-Aasser M S, Vanderhoff J W. Polym. Sci. Polym. Lett., 1973, 11: 503-513
[27] Zhang S W, Zhou S X, Weng Y M, Wu L M. Langmuir, 2005, 21 (6): 2124-2128
[28] Qiao X G, Chen M, Zhou J, Wu L M. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45: 1028-1037
[29] Zhang Y H, Chen H, Shu X W, Zou Q C, Chen M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 350: 26-32
[30] Colver P J, Colard C A L, Bon S A F. J. Am. Chem. Soc., 2008, 130 (50): 16850-16851
[31] Sheibat-Othman N, Bourgeat-Lami E. Langmuir, 2009, 25 (17): 10121-10133
[32] Zhang K, Wu W, Meng H, Guo K, Chen J F. Powder Technology, 2009, 190: 393-400
[33] Yin D Z, Zhang Q Y, Yin C J, Jia Y, Zhang H P. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 367: 70-75
[34] Zhang Y H, Zou Q C, Shu X W, Tang Q Q, Chen M, Wu L M. Journal of Colloid and Interface Science, 2009, 336 (2): 544-550
[35] Duan L L, Chen M, Zhou S X, Wu L M. Langmuir, 2009, 25: 3467-3472
[36] 姚丽(Yao L), 杨婷婷(Yang T T), 程时远(Cheng S Y). 高分子学报(Acta Polymerica Sinica), 2008, 3: 221-230
[37] Yao L, Yang T T, Cheng S Y. Journal of Applied Polymer Science, 2010, 115: 3500-3507
[38] Qu A L, Wen X F, Pi P H, Cheng J, Yang Z R. Journal of Colloid and Interface Science, 2008, 317: 62-69
[39] Liao W B, Qu J Q, Li Z, Chen H Q. Chinese Journal of Chemical Engineering, 2010, 18 (1): 156-163
[40] Kamat K, Lu Y, Xia Y. J. Am. Chem. Soc., 2003, 125: 2384-2385
[41] Chen M, Wu L M, Zhou S X, You B. Adv. Mater., 2006, 18: 801-806
[42] 邓字巍 (Deng Z W), 陈敏(Chen M), 周树学(Zhou S X), 游波(You B), 武利民(Wu L M). 高等学校化学学报(Chemical Journal of Chinese Universities), 2006, 27: 1795-1799
[43] Cheng X J, Chen M, Wu L M, You B. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45: 3431-3439
[44] Fujiwara M, Shiokawa K, Sakakura I, Nakahara Y. Langmiur, 2010, 26: 6561-6567
[45] Li G L, Shi Q, Yuan S J, Neoh K G, Kang E T, Yang X L. Chem. Mater., 2010, 22 (4): 1309-1317
[46] Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Boston: Academic Press, 1990
[47] Müller W E G. Silicon Biomineralization: Biology-Biochemistry-Molecular Biology-Biotechnology, Berlin: Springer, 2003
[48] 江雷(Jiang L), 冯琳(Feng L). 仿生智能纳米界面材料(Biomimetic Nano Interface Smart Materials). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2007
[49] Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. USA, 1998, 95: 6243-6238
[50] Kröger N, Deutzmann R, Sumper M. Science, 1999, 286: 1129-1132
[51] Patwardhan S V, Clarson S J, Perry C C. Chem. Commun., 2005, 1113-1121
[52] Patwardhan S V, Clarson S J. Materials Science and Engineering C, 2003, 23: 495-499
[53] Patwardhan S V, Clarson S J. J. Inorg. Organomet. Polym., 2003, 13(1): 49-53
[54] Patwardhan S V, Clarson S J. J. Inorg. Organomet. Polym., 2003, 13 (4): 193-203
[55] Cha J N, Stucky G D, Morse D E, Deming T J. Nature, 2000, 403: 289-292
[56] Bellomo E G, Deming T J. J. Am. Chem. Soc., 2006, 128: 2276-2279
[57] Jan J S, Shantz D F. Chem. Mater., 2005, 17: 4310-4317
[58] Liu Y P, Shen Z R, Li L Y, Sun P C, Zhou X D, Li B H, Jin Q H, Ding D T, Chen T H. Microporous and Mesoporous Materials, 2006, 92 : 189-194
[59] Yuan J J, Zhu P X, Fukazawa N, Jin R H. Adv. Funct. Mater., 2006, 16: 2205-2212
[60] Yuan J J, Mykhaylyk O O, Ryan A J, Armes S P. J. Am. Chem. Soc., 2007, 129: 1717-1723
[61] Pi M W, Yang T T, Yuan J J, Fujii S, Kakigi Y, Nakamura Y, Cheng S Y. Colloids and Surfaces B: Biointerfaces, 2010, 78: 193-199
[62] Zhou F, Li S H, Vo C D, Yuan J J, Chai S G, Gao Q, Armes S P, Lu C J, Cheng S Y. Langmuir, 2007, 23: 9737-9744
[63] Chai S G, Zhang J Z, Yang T T, Yuan J J, Cheng S Y. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 356: 32-39
[64] Li X Q, Yang T T, Gao Q, Yuan J J, Cheng S Y. Journal of Colloid and Interface Science, 2009, 338: 99-104
[65] 李小青(Li X Q), 柴仕淦(Chai S G), 杨婷婷(Yang T T), 高庆(Gao Q), 袁建军(Yuan J J), 程时远(Cheng S Y). 应用化学(Chinese Journal of Applied Chemistry), 2009, 26: 633-636
[66] Li X Q, Yuan J J, Liu H, Jiang L, Sun S Q, Cheng S Y. Journal of Colloid and Interface Science, 2010, 348: 408-415
[67] 曹丰(Cao F), 李东旭(Li D X), 管自生(Guan Z S). 无机材料学报(Journal of Inorganic Materials), 2009, 24 (3): 501-506

[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[3] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[4] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[5] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[6] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[7] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[8] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[9] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[10] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[11] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[12] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[13] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
[14] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[15] 李雷, 李彦兴, 姚瑶, 姚良宏, 季伟捷, 区泽棠. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690.