English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 173-181 前一篇   后一篇

• 综述与评论 •

间充质干细胞扩增载体材料

赵爽1, 赵燕燕1, 孟恒星2, 李茜2, 尹玉姬1*   

  1. 1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 30007;
    2. 协和干细胞基因工程有限公司 天津 300384
  • 收稿日期:2011-05-01 修回日期:2011-06-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家自然科学基金项目(No.51073116,30670572)资助

Carrier Materials of Mesenchymal Stem Cells Expansion

Zhao Shuang1, Zhao Yanyan1, Meng Hengxing2, Li Qian2, Yin Yuji1*   

  1. 1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30007;
    2. Union Stem Cell & Gene Engineering CO. LTD., Tianjin 300384, China
  • Received:2011-05-01 Revised:2011-06-01 Online:2012-01-24 Published:2011-11-22

间充质干细胞(MSCs)具有高度自我更新能力、多分化潜能、体外易分离和培养的特性,是细胞治疗和组织工程重要的种子细胞来源,但如何大规模地获得具有可再生活性的MSCs一直是限制其临床应用的关键因素,近几年发展起来的贴壁动物细胞动态培养技术为MSCs的大规模体外扩增提供了一条重要的途径。本综述结合动物细胞扩增载体的发展现状,主要介绍了用于间充质干细胞三维动态培养的明胶载体、海藻酸盐载体、壳聚糖载体和其他多糖载体等常规载体及其表面修饰和改性方法,并进一步介绍了以非酶解途径回收扩 增细胞的新型干细胞载体的研究进展。随着新型载体材料的涌现以及人们对干细胞生长和扩增特点的了解,采用三维动态培养技术安全而有效地大规模体外扩增MSCs的必要性将得到进一步的确认。

Mesenchymal stem cell (MSC) is an important cell source of cell therapy and tissue engineering because of its characteristics of self-renewal, multi-differentiation potential, easily isolated and cultured in vitro. Expansion of MSCs in vitro is a necessary step in clinical application of MSCs since it is impossible to get enough MSCs directly from donors. Namely, how to culture MSCs in large-scale is the key factor to limit its application. The methodology of 3-D dynamic culture of anchorage-dependent cells provides an important way for expansion of MSCs in vitro. This review intends to overview the current progress in the MSCs expansion field and discusses the main events that have occurred along the way. Gelatin, alginate, chitosan and some other polysaccharide carrier materials used for 3-D culture of mammalian cells and MSCs are summarized and discussed. The surface modification methodologies of the microcarriers are also presented. Furthermore, some new carrier materials used for stem cells expansion are introduced. The technical advances together with the ever increasing knowledge and experience in the field of carrier materials preparation and MSCs proliferation/expansion characteristics will lead to the realization of the full potential of 3-D dynamic MSCs culture in the future.

Contents
1 Intruduction
2 Conventional carriers of animal cell culture
2.1 Gelatin microcarriers
2.2 Alginate microcarriers
2.3 Chitosan microcarriers
2.4 Other polysaccharide carriers
3 Novel stem cells carriers
4 Prospect

中图分类号: 

()

[1] 裴雪涛 (Pei X T), 刘大庆 (Liu D Q). 中国修复重建外科杂志 (Chinese Journal of Reparative and Reconstructive Surgery), 2006, 20: 344-348
[2] Ulloa-Montoya F, Verfaillie C M, Hu W S. Journal of Bioscience and Bioengineering, 2005, 100: 12-27
[3] Brinchmann J E. Journal of the Neurological Sciences, 2008, 265: 127-130
[4] Croft A, Przyborski S. Current Anaesthesia & Critical Care, 2004, 15: 410-417
[5] Hernández R M, Orive G, Murua A, Pedraz J L. Advanced Drug Delivery Reviews, 2010, 62: 711-730
[6] Pountos I, Corscadden D, Emery P, Giannoudis P V. Injury, 2007, 38: S23-S33
[7] Frith J E, Thomson B, Genever P G. Tissue Engineering Part C: Methods, 2010, 16: 735-749
[8] 王常勇 (Wang C Y). 生物医学工程与临床 (Biomedical Engineering and Clinical), 2002, 6: 51-54
[9] Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Advanced Drug Delivery Reviews, 2008, 60: 215-228
[10] Schop D, Janssen F, Borgart E, de Bruijn J, van Dijkhuizen-Radersma R. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2: 126-135
[11] 过琴媛(Guo Q Y), 王辉(Wang H). 微生物学免疫学进展(Progress in Microbiology and Immunology), 2007, 35: 73-75
[12] Brun-GraeppiA K, Richard C, Bessodes M, Scherman D, Merten O W. Journal of Controlled Release, 2011, 149: 209-224
[13] 王忆娟 (Wang Y J), 刘守信 (Liu S X), 房喻 (Fang Y), 黄沙 (Huang S), 金岩 (Jin Y), 姜宇 (Jiang Y). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2007, 28: 1776-1780
[14] Huang S, Wang Y, Deng T, Jin F, Liu S, Zhang Y, Feng F. Journal of Alloys and Compounds, 2008, 460: 639-645
[15] Mi F L. Biomacromolecules, 2005, 6: 975-987
[16] Jin J, Song M, Hourston D J. Biomacromolecules, 2004, 5: 162-168
[17] Sisson K, Zhang C, Farach-Carson M C, Chase D B, Rabolt J F. Biomacromolecules, 2009, 10: 1675-1680
[18] Lau T T, Wang C, Wang D A. Composites Science and Technology, 2010, 70: 1909-1914
[19] Wang C, Gong Y, Lin Y, Shen J, Wang D A. Acta Biomaterialia, 2008, 4: 1226-1234
[20] Bratt-Leal A M, Carpenedo R L, Ungrin M D, Zandstra P W, McDevitt T C. Biomaterials, 2011, 32: 48-56
[21] Eibes G, dos Santos F, Andrade P Z, Boura J S, Abecasis M, da Silva C L, Cabral J. Journal of Biotechnology, 2010, 146: 194-197
[22] Yang Y, Rossi F, Putnins E E. Biomaterials, 2007, 28: 3110-3120
[23] Sart S, Schneider Y J, Agathos S N. Journal of Biotechnology, 2010, 150: 149-160
[24] Draget K I, Strand B, Hartmann M, Valla S, Smidsrod O, Skjak-Braek G. International Journal of Biological Macromolecules, 2000, 27: 117-122
[25] Simpson N E, Stabler C L, Simpson C P, Sambanis A, Constantinidis I. Biomaterials, 2004, 25: 2603-2610
[26] Darrabie M D, Kendall W F, Opara E C. Biomaterials, 2005, 26: 6846-6852
[27] Mazumder M A J, Shen F, Burke N A D, Potter M A, Stöver H D H. Biomacromolecules, 2008, 9(9): 2292-2300
[28] Gardner C M, Burke N A D, Stöver H D H. Langmuir, 2010, 26: 4916-4924
[29] Maguire T, Novik E, Schloss R, Yarmush M. Biotechnology and Bioengineering, 2006, 93: 581-591
[30] Wang N, Adams G, Buttery L, Falcone F H, Stolnik S. Journal of Biotechnology, 2009, 144: 304-312
[31] Chayosumrit M, Tuch B, Sidhu K. Biomaterials, 2010, 31: 505-514
[32] Endres M, Wenda N, Woehlecke H, Neumann K, Ringe J, Erggelet C, Lerche D, Kaps C. Acta Biomaterialia, 2010, 6: 436-444
[33] Li X, Liu T, Song K, Yao L, Ge D, Bao C, Ma X, Cui Z. Biotechnology Progress, 2006, 22: 1683-1689
[34] Mitalipova M M, Rao R R, Hoyer D M, Johnson J A, Meisner L F, Jones K L, Dalton S, Stice S L. Nature Biotechnology, 2005, 23: 19-20
[35] Ashton R S, Banerjee A, Punyani S, Schaffer D V, Kane R S. Biomaterials, 2007, 28: 5518-5525
[36] 刘成圣(Liu C S), 陈西广 (Chen X G), 刘晨光 (Liu C G), 刘万顺 (Liu W S), 郎刚华 (Lang G H). 海洋科学 (Marine Science), 2000, 24: 20-23
[37] Pillai C, Paul W, Sharma C P. Progress in Polymer Science, 2009, 34: 641-678
[38] Lu G, Zhu L, Kong L, Zhang L, Gong Y, Zhao N, Zhang X. Tsinghua Science & Technology, 2006, 11: 427-432
[39] Lu G, Sheng B, Wei Y, Wang G, Zhang L, Ao Q, Gong Y, Zhang X. European Polymer Journal, 2008, 44: 2820-2829
[40] Chen X G, Liu C S, Liu C G, Meng X H, Lee C M, Park H J. Biochemical Engineering Journal, 2006, 27: 269-274
[41] García Cruzl D M, Escobar Ivirico1 J L, Gomes M M, Gómez Ribelles J L, S'anchez M S, Reis R L, Mano J F. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2: 378-380
[42] Li X, Yang Z, Zhang A. Biomaterials, 2009, 30: 4978-4985
[43] Yang Z, Duan H, Mo L, Qiao H, Li X. Biomaterials, 2010, 31: 4846-4854
[44] Oh Steve K W, Chen A K, Mok Y, Chen X, Lim U. Stem cell research, 2009, 2: 219-230
[45] Kobayashi N, Okitsu T, Maruyama M, Totsugawa T, Kosaka Y, Hayashi N, Nakaji S, Tanaka N. Transplantation Proceedings, 2003, 35: 443-444
[46] Frauenschuh S, Reichmann E, Ibold Y, Goetz P M, Sittinger M, Ringe J. Biotechnology Progress, 2007, 23: 187-193
[47] Nie Y, Bergendahl V, Hei D J, Jones J M, Palecek S P. Biotechnology Progress, 2009, 25: 20-31
[48] 吴清法(Wu Q F), 吴祖泽 (Wu Z Z), 董波 (Dong B), 王立生 (Wang L S). 中国实验血液学杂志(Journal of Experimental Hematology), 2003, 11: 15-21
[49] Zhang J, Skardal A, Prestwich G D. Biomaterials, 2008, 29: 4521-4531
[50] Bancel S, Hu W S. Biotechnology Progress, 1996, 12: 398-402
[51] Doran M R, Frith J E, Prowse A B J, Fitzpatrick J, Wolvetang E J, Munro T P, Gray P P, Cooper-White J J. Biomaterials, 2010, 31: 5137-5142
[52] Konagaya S, Kato K, Nakaji-Hirabayashi T, Iwata H. Biomaterials, 2011, 32: 992-1001
[53] Prestwich G D. Journal of Controlled Release, 2011, doi: 10.1016/j.jconrel.2011.04.00
[54] Phillips J E, Petrie T A, Creighton F P, García A J. Acta Biomaterialia, 2010, 6: 12-20

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[5] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[6] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[7] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[8] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[9] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[10] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[11] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[12] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[13] 王荣民, 吕思瑶, 李涛, 何玉凤, 宋鹏飞. 碳酸钙模板法制备高分子微球[J]. 化学进展, 2016, 28(1): 75-82.
[14] 杨彩云, 曹长乾, 蔡垚, 张同伟, 潘永信. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1): 91-102.
[15] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
阅读次数
全文


摘要

间充质干细胞扩增载体材料