English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 157-162 前一篇   后一篇

• 综述与评论 •

微生物燃料电池生物阴极

陈立香, 肖勇, 赵峰*   

  1. 中国科学院城市环境研究所 中国科学院城市环境与健康重点实验室 厦门 361021
  • 收稿日期:2011-05-01 修回日期:2011-07-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    中国科学院“百人计划”项目、中国科学院知识创新工程重要方向项目(No.KZCX2-EW-402)和国家高技术发展计划(863)项目(No.2011AA060907)资助

Biocathodes in Microbial Fuel Cells

Chen Lixiang, Xiao Yong, Zhao Feng*   

  1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received:2011-05-01 Revised:2011-07-01 Online:2012-01-24 Published:2011-11-22

微生物燃料电池(microbial fuel cells, MFCs)利用微生物处理废水的同时产电,是一种清洁可再生能源技术。近年来新兴起的生物阴极是指阴极室中的功能微生物附着在电极表面形成生物膜,电子由电极传递给微生物并发生相应的生物电化学反应;是微生物燃料电池研究的一个重要方向。本文根据厌氧、好氧操作体系的不同将生物阴极进行分类;归纳总结了微生物组成、电极和分隔材料的研究进展,探讨了生物阴极在去除污染物和生成高附加值产品中的实际应用,并提出了其将来发展的可能方向。

Microbial fuel cells (MFCs) produce electricity,which is clean and renewable energy,through degradation of pollutants in wastewater by microorganism.MFC biocathode refers to microorganisms attaching on electrode surface to form biofilm while electron transferred from cathode to microorganisms via bioelectrochemistry reactions. This review introduces the classification of biocathodes based on aerobic and anaerobic conditions, biofilm community, electrode materials, separation membranes, and present the main applications in pollutant removal and recover as well as the possible future research directions.

Contents
1 Introduction
2 Biocathode types
2.1 Aerobic biocathodes
2.2 Anaerobic biocathodes
3 Biofilm
4 Electrode materials
5 Separation
6 Biocathode applications
6.1 Dye decolouration
6.2 Biohydrogen production
6.3 Heavy metal removal
6.4 Denitrification of wastewater
6.5 Dechlorination of wastewater
7 Outlook

中图分类号: 

()

[1] 卢娜(Lu N), 周顺桂(Zhou S G), 倪晋仁(Ni J R). 化学进展(Progress in Chemistry), 2008, 20: 1233-1240
[2] Zhao F, Slade R C T, Varcoe J R. Chem. Soc. Rev., 2009, 38: 1926-1939
[3] Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I. Environ. Sci. Technol., 2006, 40: 5193-5199
[4] Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Electrochem. Commun., 2005, 7: 1405-1410
[5] Hasvold O, Henriksen H, Melvr E, Citi G, Johansen B, Kjnigsen T, Galetti R. J. Power Sources, 2007, 65: 253-261
[6] Bergel A, Féron D, Mollica A. Electrochem. Commun., 2005, 7: 900-904
[7] ChungK, FujikiI, Okabe S. Bioresource Technolog., 2011, 102: 355-360
[8] 毛艳萍(Mao Y P), 蔡兰坤(Cai L K), 张乐华(Zhang L H), 侯海萍(Hou H P), 黄光团(Huang G T), 刘勇弟(Liu Y D). 化学进展(Progress in Chemistry), 2009, 21: 1672-1677
[9] Kontani R, Tsujimura S, Kano K. Bioelectrochem., 2009, 76: 10-13
[10] Clauwaert P, van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W. Environ. Sci. Technol., 2007, 41: 7564-7569
[11] Zhang J N, Zhao Q L, Aelterman P, You S J, Jiang J Q. Biotechnol. Lett., 2008, 30: 1771-1776
[12] 谢珊(Xie S), 陈阳(Chen Y), 梁鹏(Liang P). 环境科学(Environmental Science), 2010, 31: 1601-1606
[13] Wu X E, Zhao F, Rahunen N, Varcoe J R, Rossa C A. Angew. Chem. Int. Ed., 2011, 50: 427-430
[14] HeZ, AngenentLT. Electroanalysis, 2006, 18: 2009-2015
[15] Lefebvre O, Al-Mamun A, Ng H Y. Water Sci. Technol., 2008, 58: 881-885
[16] Cao X X, Huang X, Liang P, Boon N, Fan M Z, Zhang L, Zhang X Y. Energy Environ. Sci., 2009, 2: 498-501
[17] Virdis B, Read S T, Rabaey K, Rozendal R A, Yuan Z, Keller J. Bioresour. Technol., 2011, 102: 334-341
[18] Erable B, Vandecandelaere I, Faimali M, Delia M L, Etcheverry L, Vandamme P, Bergel A. Bioelectrochem., 2010, 78: 51-56
[19] Mao Y, Zhang L, Li D, Shi H, Liu Y, Cai L. Electrochim. Acta, 2010, 55: 7804-7808
[20] Chen G W, Choi S J, Lee T H, Lee G Y, Cha J H, Kim C W. Appl. Microbiol. Biotechnol., 2008, 79: 379-388
[21] Cournet A, Délia M L, Bergel A, Roques C, Bergé M. Electrochem. Commun., 2010, 12: 505-508
[22] Rabaey K, Read S T, Clauwaert P, Reguia S, Bond P L, Blackall L L, Keller J. ISME J., 2008, 2: 1-9
[23] Freguia S, Tsujimura S, Kano K. Electrochim. Acta, 2010, 55: 813-818
[24] Gregory K B, Lovley D R. Environ. Sci. Technol., 2005, 39: 8943-8947
[25] Park D H, ZeikusJ G. J. Bacteriol., 1999, 181: 2403-2410
[26] Cheng S A, Xing D F, Call D F. Environ. Sci. Technol., 2009, 43: 3953-3958
[27] Cheng K Y, Ho G, Ruwisch R C. Environ. Sci. Technol., 2010, 44: 518-525
[28] You S J, Ren N Q, Zhao Q L, Wang J Y, Yang F L. Fuel Cells, 2009, 9: 588-596
[29] Tandukar M, Huber S J, Onodera T, Pavlostathis S G. Environ. Sci. Technol., 2009, 43: 8159-8165
[30] Steinbusch K J, Hamelers H V, Schaap J D, Kam-Pman C, Buisman C J. Environ. Sci. Technol., 2010, 44: 513-517
[31] Clauwaert P, Rabaey K, Aelterman P, Liesje D S, Haip H T, Pascal B, Nico B, Willy V. Environ. Sci. Technol., 2007, 41: 3354-3360
[32] Liu X W, Sun X F, Huang Y X, Sheng G P, Wang S G, Yu H Q. Energy Environ. Sci., 2011, 4: 1422-1427
[33] Virdis B, Rabaey K, Rozendal R A, Yuan Z G, Keller J. Water Res., 2010, 44: 2970-2980
[34] Aulenta F C A, Majone M, Panero S, Reale P, Rossetti S. Environ. Sci. Technol., 2008, 42: 6185-6190
[35] Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Biosens. Bioelectron., 2010, 25: 1796-1802
[36] Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioresour. Technol., 2010, 101: 3085-3090
[37] Rozendal R A, Jeremiasse A W, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2008, 42: 629-634
[38] Jeremiasse A W, Hamelers H V M, Buisman C J N. Bioelectrochem., 2010, 78: 39-43
[39] Xie S, Liang P, Chen Y, Xia X, Huang X. Bioresour. Technol., 2011, 102: 348-354
[40] Gregory K B, Bond D R, Lovley D R. Environ. Microbiol., 2004, 6: 596-604
[41] Dumas C, Basseguy R, Bergel A. Electrochim. Acta, 2008, 53: 2494-2500
[42] Thrash J C, Trump J I V, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41: 1740-1746
[43] Strycharz S M, Woodard T L, Johnson J P. Appl. Environ. Microbiol., 2008, 74: 5943-5947
[44] Freguia S, Rabaey K, Yuan Z G, Keller J. Water Res., 2008, 42: 1387-1396
[45] Liu X W, Sun X F, Huang Y X, Sheng G P, Zhou K, Zeng R J, Dong F, Wang S G, Xu A W, Tong Z H. Water Res., 2010, 44: 5298-5305
[46] Wang X, Feng Y, Wang E, Li C. J. Biotechnol., 2008, 136: s662
[47] Li W W, Sheng G P, Liu X W, Yu H Q. Bioresource Technology, 2011, 102: 244-252
[48] Zhao F, Rahunen N, Varcoe J R, Roberts A J, Avignone-Rossa C, Thumser A E, Slade R C T. Biosens. Bioelectron., 2009, 24: 1931-1936
[49] Heijne T A, Strik D, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2010, 44: 7151-7156
[50] Huang L P, Chen J W, Quan X, Yang F L. Bioprocess Biosys. Eng., 2010, 33: 937-945
[51] 毕哲(Bi Z), 胡勇有(Hu Y Y), 孙健(Sun J). 环境科学学报(Acta Scientiae Circumstantiae), 2009, 29: 1635-1642
[52] Sun J, Bi Z, Hou B. Water Res., 2011, 45: 283-291
[53] Lovley D R. Nat. Rev. Microbiol., 2006, 4: 497-508
[54] Jiang XC, Hu J S, Fitzgerald L A, Biffinger J C, Xie P, Ringeisen B R, Lieber C M. P. Natl. Acad. Sci., 2010, 107: 16806-16810
[55] El-Naggar M Y, Wanger G, Leung K M, Yuzvinsky T D, Southam G, Yang J, Lau W M, Nealson K H, Gorby Y A. P. Natl. Acad. Sci., 2010, 107: 18127-18131
[56] Hartshorne R S, Reardon C L, Ross D, Nuester J, Clarke T A, Gates A J, Mills P C, Fredrickson J K, Zachara J M, Shi L, Beliaev A S, Marshall M J, Tien M, Brantley S, Butt J N, Richardson D J. P. Natl. Acad. Sci., 2009, 106: 22169-22174
[57] RabaeyK, RozendalRA. Nat. Rev. Microbio., 2010, 8: 706-716

[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[4] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[5] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[6] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[7] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[8] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[9] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[10] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[11] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[12] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.
[13] 丁蕊, 赵峰. 光催化耦合微生物同步降解污染物[J]. 化学进展, 2017, 29(9): 1154-1158.
[14] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
[15] 史菁菁, 郭星, 陈人杰, 吴锋. 柔性电池的最新研究进展[J]. 化学进展, 2016, 28(4): 577-588.
阅读次数
全文


摘要

微生物燃料电池生物阴极