English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 131-143 前一篇   后一篇

• 综述与评论 •

电化学酶传感器在环境污染监测中的应用

刘佳, 殷立峰, 代云容, 江帆, 牛军峰*   

  1. 北京师范大学环境学院 水环境模拟国家重点实验室 北京 100875
  • 收稿日期:2011-05-01 修回日期:2011-07-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB429003)、教育部科学技术研究重点项目(No.109026)和教育部“新世纪优秀人才支持计划”项目(No.NCET-08-0058)资助

Application of Electrochemical Enzyme Biosensor in Environmental Pollution Monitoring

Liu Jia, Yin Lifeng, Dai Yunrong, Jiang Fan, Niu Junfeng*   

  1. The State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
  • Received:2011-05-01 Revised:2011-07-01 Online:2012-01-24 Published:2011-11-22

电化学酶传感器是一种应用广泛的生物传感器,它将酶及其底物相互作用的特异性与电化学的强大分析功能相结合,已经被广泛应用于药理学、临床、食品、农业以及环境监测中。制备电化学酶传感器的关键步骤是酶的固定化,选择用于制备电化学酶传感器的合适的酶固定化方法,在传感器电子转移动力学、稳定性和重现性等方面起着主要作用。本文在阐述电化学酶传感器工作原理的基础上,简要介绍了用于电化学酶传感器制备过程中的酶固定化方法,重点讨论了电化学酶传感器在监测环境中广泛存在的有机污染物、无机污染物和重金属等方面的应用,并对电化学酶传感器的发展方向进行了展望。

Electrochemical enzyme biosensor is a kind of widely used biosensor which combines the specificity of interaction of enzyme and its substrate with the strong function of electrochemical analysis and is well-suited for real-time, on-site detection and analysis in the field with high sensitivity, selectivity, rapid response time and easy operation. Electrochemical enzyme biosensors have a wide range of application in the areas of pharmaceutical studies, clinical diagnostics, food quality control, agriculture industries as well as environmental monitoring. The effective immobilization of enzymes on the electrode is the critical step to construct an electrochemical enzyme biosensor. The selection of appropriate immobilization methods for constructing of electrochemical enzyme biosensor governs the efficiency of the biosensor in terms of electron transfer kinetics, mass transport, operational stability, repeatability and reproducibility. On the basis of briefly clarifying the working principle of electrochemical enzyme biosensor, this review summarizes enzyme immobilization methods used in constructing of an electrochemical enzyme biosensor. The advantages and disadvantages of different immobilization methods are also discussed. In addition, the applications of electrochemical enzyme biosensor in environmental pollution monitoring including organic pollutants, inorganic pollutants and heavy metal are highlighted and the prospects of electrochemical enzyme biosensor used in environmental monitoring are also presented.

Contents
1 Introduction
2 Construction of electrochemical enzyme biosensor
3 Environmental applications
3.1 Organic pollutants
3.2 Inorganic pollutants
3.3 Heavy metals
4 Conclusions and outlook

中图分类号: 

()

[1] Tothill I E. Comput. Electron. Agr., 2001, 30: 205-218
[2] Lowe C R. Trends Biotechnol., 1984, 2: 59-65
[3] Yang S, Jia W Z, Qian Q Y, Zhou Y G, Xia X H. Anal. Chem., 2009, 81: 3478-3484
[4] Kang X H, Wang J, Wu H, Aksay I A, Liu J, Lin Y H. Biosens. Bioelectron., 2009, 25: 901-905
[5] Lu X B, Zhou J H, Lu W, Liu Q, Li J H. Biosens. Bioelectron., 2008, 23: 1236-1243
[6] Rodriguez-Mozaz S, Lopez de Alda M, Barceló D. Anal. Bioanal. Chem., 2006, 386: 1025-1041
[7] Sun X, Wang X. Biosens. Bioelectron., 2010, 25: 2611-2614
[8] Clark L C, Lyons C. Ann. NY. Acad. Sci., 1962, 102: 29-45
[9] Updike S J, Hicks G P. Nature, 1967, 214: 986-988
[10] Wanekaya A K, Chen W, Mulchandani A. J. Environ. Monitor., 2008, 10: 703-712
[11] Kamtekar S D, Pande R, Ayyagari M S, Marx K A, Kaplan D L, Kumar J, Tripathy S. Anal. Chem., 1996, 68: 216-220
[12] Bontidean I, Lloyd J R, Hobman J L, Wilson J R, Csöregi E, Mattiasson B, Brown N L. J. Inorg. Biochem., 2000, 79: 225-229
[13] Rogers K R, Williams L R. TrAC Trends Anal. Chem., 1995, 14: 89-294
[14] Atanassov P, Apblett C, Banta S, Brozik S, Barton S C, Cooney M, Liaw B Y, Mukerjee S, Minteer S D. The Electrochemical Society Interface, 2007, 16: 28-31
[15] Yu Z M, Zhao G H, Liu M C, Lei Y Z, Li M F. Environ. Sci. Technol., 2010, 44: 7878-7883
[16] Ruzgas T, Csoregi E, Emneus J, Gorton L, MarkoVarga G. Anal. Chim. Acta, 1996, 330: 123-138
[17] Topcu S M, Erhan E, Keskinler B. Appl. Biochem. Biotech., 2010, 160: 856-867
[18] Munteanu F D, Cavaco-Paulo A. Anal. Lett., 2010, 43: 1126-1131
[19] Pohanka M, Dobes P, Drtinova L, Ku?a K. Electroanal., 2009, 21: 1177-1182
[20] Chen D, Wang G, Li J H. J. Phys. Chem. C, 2007, 111: 2351-2367
[21] 鞠熀先(Ju H X). 电分析化学与生物传感技术(Electroanalysis Chemistry and Biological Sensing Technology). 北京: 科学出版社(Beijing: Science Press), 2006. 187-197
[22] Brady D, Jordaan J. Biotechnol. Lett., 2009, 31: 1639-1650
[23] Hanefeld U, Gardossi L, Magner E. Chem. Soc. Rev., 2009, 38: 453-468
[24] Farré M, Kantiani L, Pérez S, Barceló D. TrAC Trends Anal. Chem., 2009, 28: 170-185
[25] Xu S J, Liu Y, Wang T H, Li J H. Anal. Chem., 2010, 82: 9566-9572
[26] Wang J. Analytical Electrochemistry. Hoboken, New Jersey, USA: John Wiley & Sons VCH, 2006
[27] Ronkainen N J, Halsall H B, Heineman W R. Chem. Soc. Rev., 2010, 39: 1747-1763
[28] Eggins B R. Chemical Sensors and Biosensors. West Sussex, England: John Wiley & Sons, 2002
[29] Keusgen M. Naturwissenschaften, 2002, 89: 433-444
[30] Sheldon R A. Adv. Synth. Catal., 2007, 349: 1289-1307
[31] Arya S K, Datta M, Malhotra B D. Biosens. Bioelectron., 2008, 23: 1083-1100
[32] Chaki N K, Vijayamohanan K. Biosens. Bioelectron., 2002, 17: 1-12
[33] Chen D, Li J H. Surf. Sci. Rep., 2006, 61: 445-464
[34] Pierre A C. Biocatal. Biotransfor., 2004, 22: 145-170
[35] Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M. Mater. Lett., 1990, 10: 1-5
[36] Cao L Q. Unconventional Enzyme Immobilization. Carrier-bound Immobilized Enzymes. Wiley-VCH Verlag GmbH & Co. KGaA, 2006. 449-549
[37] 代云容(Dai Y R),牛军峰(Niu J F),殷立峰(Yin L F),刘佳(Liu J),蒋国翔(Jiang G X). 化学进展(Progress in Chemistry), 2010, 22(9): 1808-1818
[38] Badihi-Mossberg M, Buchner V, Rishpon J. Electroanal., 2007, 19: 2015-2028
[39] Guo D J, Lakshmikantham V. Non-Linear Problems in Abstract Cones. Boston: Academic Press, 1988
[40] Mita D G, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D. Biosens. Bioelectron., 2007, 23: 60-65
[41] Alarcón G, Guix M, Ambrosi A, Ramirez Silva M T, Palomar Pardave M E, Merkoçi A. Nanotechnology, 2010, 21: art. no. 245502
[42] Tan Y M, Deng W F, Ge B, Xie Q J, Huang J H, Yao S Z. Biosens. Bioelectron., 2009, 24: 2225-2231
[43] Korkut S, Keskinler B, Erhan E. Talanta, 2008, 76: 1147-1152
[44] Yaropolov A I, Kharybin A N, Emnéus J, Marko-Varga G, Gorton L. Anal. Chim. Acta, 1995, 308: 137-144
[45] Freire R S, Durán N, Kubota L T. Talanta, 2001, 54: 681-686
[46] Haghighi B, Gorton L, Ruzgas T, Jönsson L J. Anal. Chim. Acta, 2003, 487: 3-14
[47] Jarosz-Wilkolazka A, Janusz G, Ruzgas T, Gorton L, Malarczyk E, Leonowicz A. Anal. Lett., 2004, 37: 1497-1513
[48] Wang Y, Hasebe Y. Talanta, 2009, 79: 1135-1141
[49] Dzyadevych S V, Soldatkin A P, Arkhypova V N, Elskaya A V, Chovelon J M, Georgiou C A, Martelet C, Jaffrezic-Renault N. Sens. Actuators B, 2005, 105: 81-87
[50] Zhao W, Ge P Y, Xu J J, Chen H Y. Environ. Sci. Technol., 2009, 43: 6724-6729
[51] Sole S, Merkoci A, Alegret S. Crit. Rev. Anal. Chem., 2003, 33: 89-96
[52] Rekha K, Gouda M D, Thakur M S, Karanth N G. Biosens. Bioelectron., 2000, 15: 499-502
[53] Du D, Ye X X, Cai J, Liu J, Zhang A D. Biosens. Bioelectron., 2010, 25: 2503-2508
[54] Chen D, Tang L H, Li J H. Chem. Soc. Rev., 2010, 39: 3157-3180
[55] Wang Y, Zhang S, Du D, Shao Y Y, Li Z H, Wang J, Engelhard M H, Li J H, Lin Y H. J. Mater. Chem., 2011, 21: 5319-5325
[56] Vidal J C, Bonel L, Castillo J R. Electroanal., 2008, 20: 865-873
[57] Tanimoto de Albuquerque Y D, Ferreira L F. Anal. Chim. Acta, 2007, 596: 210-221
[58] Vidal J C, Esteban S, Gil J, Castillo J R. Talanta, 2006, 68: 791-799
[59] Wang Y, Lu J, Tang L H, Chang H X, Li J H. Anal. Chem., 2009, 81: 9710-9715
[60] Zhang Y L, Wang Y, Wang H B, Jiang J H, Shen G L, Yu R Q, Li J H. Anal. Chem., 2009, 81: 1982-1987
[61] Munnecke D M. Biotechnol. Bioeng., 1979, 21: 2247-2261
[62] Russell R J, Pishko M V, Simonian A L, Wild J R. Anal. Chem., 1999, 71: 4909-4912
[63] Du D, Chen W J, Zhang W Y, Liu D L, Li H B, Lin Y H. Biosens. Bioelectron., 2010, 25: 1370-1375
[64] Laothanachareon T, Champreda V, Sritongkham P, Somasundrum M, Surareungchai W. World J. Microbiol. Biotechnol., 2008, 24: 3049-3055
[65] Qu Y H, Sun Q, Xiao F, Shi G Y, Jin L T. Bioelectrochemistry, 2010, 77: 139-144
[66] Kim G Y, Shim J, Kang M S, Moon S H. J. Environ. Monitor., 2008, 10: 632-637
[67] Choi J W, Kim Y K, Song S Y, Lee I H, Lee W H. Biosens. Bioelectron., 2003, 18: 1461-1466
[68] Morales M D, Morante S, Escarpa A, González M C, Reviejo A J, Pingarrón J M. Talanta, 2002, 57: 1189-1198
[69] Sohail M, Adeloju S B. Sensor. Actuat. B-Chem., 2008, 133: 333-339
[70] Bendikov T A, Kim J, Harmon T C. Sensor. Actuat. B-Chem., 2005, 106: 512-517
[71] Narayana B, Sunil K. Eurasian J. Anal. Chem., 2009, 4: 204-214
[72] Klosin'ska T, Radomski A, Zielenkiewicz T, Kowalczyk S. Annals of Warsaw University of Life Sciences-SGGW, Forestry Wood Technol., 2009, 68: 367-374
[73] Davenport R J, Johnson D C. Anal. Chem., 1973, 45: 1979-1980
[74] Albanese D, di Matteo M, Alessio C. Computer Aided Chemical Engineering, 2010, 28: 283-288
[75] Sohail M, Adeloju S. Electroanal., 2009, 21: 1411-1418
[76] Cosnier S, da Silva S, Shan D, Gorgy K. Bioelectrochemistry, 2008, 74: 47-51
[77] Kamyabi M A, Aghajanloo F. J. Electroanal. Chem., 2008, 614: 157-165
[78] Gieseke A, Tarre S, Green M, de Beer D. Appl. Environ. Microbiol., 2006, 72: 4283-4292
[79] Isoda N, Yokoyama H, Nojiri M, Suzuki S, Yamaguchi K. Bioelectrochemistry, 2010, 77: 82-88
[80] Zhang Z Q, Xia S Q, Leonard D, Jaffrezic-Renault N, Zhang J, Bessueille F, Goepfert Y, Wang X J, Chen L, Zhu Z L, Zhao J F, Almeida M G, Silveira C M. Biosens. Bioelectron., 2009, 24: 1574-1579
[81] Silveira C M, Gomes S P, Araújo A N, Montenegro M C B S M, Todorovic S, Viana A S, Silva R J C, Moura J J G, Almeida M G. Biosens. Bioelectron., 2010, 25: 2026-2032
[82] Chen Q P, Ai S Y, Zhu X B, Yin H S, Ma Q, Qiu Y Y. Biosens. Bioelectron., 2009, 24: 2991-2996
[83] Chen H, Mousty C, Chen L, Cosnier S. Mater. Sci. Eng. C, 2008, 28: 726-730
[84] Zazoua A, Hnaien M, Cosnier S, Jaffrezic-Renault N, Kherrat R. Mater. Sci. Eng. C, 2009, 29: 1919-1922
[85] Salimi A, Noorbakhsh A, Ghadermarzi M. Sens. Actuators B, 2007, 123: 530-537
[86] EPA new: EPA Sets Reference Dose for Perchlorate, (2005).[2011-04-30]. http: //www. epa. gov/fedfac/documents/perchlorate_links. htm#pgepadocs
[87] CDHS, Perchlorate Drinking Water Action Level and Regulation, D. O. H. Services, Ed. Sacramento, CA. 2004
[88] Okeke B C, Ma G Y, Cheng Q, Losi M E, Frankenberger W T. J. Microbiol. Meth., 2007, 68: 69-75
[89] Yin C X, Su J, Huo F J, Yang P. Health, 2009, 1: 76-82
[90] Tsoulfanidis I A, Tsogas G Z, Giokas D L, Vlessidis A G. Microchim. Acta, 2008, 160: 461-469
[91] Kulys J, Higgins I J, Bannister J V. Biosens. Bioelectron., 1992, 7: 187-191
[92] Parellada J, Narváez A, López M A, Domínguez E, Fernández J J, Pavlov V, Katakis I. Anal. Chim. Acta, 1998, 362: 47-57
[93] Bontidean I, Lloyd J R, Hobman J L, Brown N L, Mattiasson B, Csöregi E. American Chemical Society, 2000, 102-112
[94] Ghica M E, Brett C M A. Microchim. Acta, 2008, 163: 185-193
[95] Bontidean I, Berggren C, Johansson G, Csöregi E, Mattiasson B, Lloyd J R, Jakeman K J, Brown N L. Anal. Chem., 1998, 70: 4162-4169
[96] Berezhetskyy A L, Sosovska O F, Durrieu C, Chovelon J M, Dzyadevych S V, Tran-Minh C. IRBM, 2008, 29: 136-140
[97] Domínguez-Renedo O, Alonso-Lomillo M A, Ferreira-Gonalves L, Arcos-Martínez M J. Talanta, 2009, 79: 1306-1310
[98] Bagal-Kestwal D, Karve M S, Kakade B, Pillai V K. Biosens. Bioelectron., 2008, 24: 657-664
[99] Tsai H C, Doong R A. Biosens. Bioelectron., 2007, 23: 66-73
[100] Fiorentino D, Gallone A, Fiocco D, Palazzo G, Mallardi A. Biosens. Bioelectron., 2010, 25: 2033-2037
[101] Adamski J, Nowak P, Kochana J. Electrochim. Acta, 2010, 55: 2363-2367
[102] Kushwah B S, Bhadauria S. J. Appl. Polym. Sci., 2010, 115: 1358-1365
[103] Wang P, Liu M, Kan J. Sens. Actuators B, 2009, 140: 577-584
[104] Kochana J, Gala A, Parczewski A, Adamski J. Anal. Bioanal. Chem., 2008, 391: 1275-1281
[105] Fan Q, Shan D, Xue H G, He Y Y, Cosnier S. Biosens. Bioelectron., 2007, 22: 816-821
[106] ElKaoutit M, Naranjo-Rodriguez L, Temsamani K R, de la Vega M D, de Cisneros J L H H. J. Agr. Food Chem., 2007, 55: 8011-8018
[107] Dempsey E, Diamond D, Collier A. Biosens. Bioelectron., 2004, 20: 367-377
[108] Moccelini S K, Vieira I C, de Lima F, Lucca B G, Barbosa A M J, Ferreira V S. Talanta, 2010, 82: 164-170
[109] Ion A C, Ion I, Culetu A, Gherase D, Moldovan C A, Iosub R, Dinescu A. Mater. Sci. Eng. C, 2010, 30: 817-821
[110] Kim G Y, Shim J, Kang M S, Moon S H. J. Environ. Monitor., 2008, 10: 632-637
[111] Orbulescu J, Constantine C A, Rastogi V K, Shah S S, DeFrank J J, Leblanc R M. Anal. Chem., 2006, 78: 7016-7021
[112] Campanella L, Dragone R, Lelo D, Martini E, Tomassetti M. Anal. Bioanal. Chem., 2006, 384: 915-921
[113] Hmmerle M, Hilgert K, Achmann S, Moos R. Biosens. Bioelectron., 2010, 25: 1521-1525
[114] Demkiv O, Smutok O, Paryzhak S, Gayda G, Sultanov Y, Guschin D, Shkil H, Schuhmann W, Gonchar M. Talanta, 2008, 76: 837-846
[115] Achmann S, Hämmerle M, Moos R. Electroanal., 2008, 20: 410-417
[116] Khadro B, Namour P, Bessueille F, Leonard D, Jaffrezic-Renault N. Sensor. Mater., 2008, 20: 267-279
[117] Wang X J, Dzyadevych S V, Chovelon J M, Renault N J, Chen L, Xia S Q, Zhao J F. Talanta, 2006, 69: 450-455
[118] Kuralay F,Özyörük H, YildIz A. Enzyme Microb. Tech., 2007, 40: 1156-1159
[57] Tanimoto de Albuquerque Y D, Ferreira L F. Anal. Chim. Acta, 2007, 596: 210-221

[58] Vidal J C, Esteban S, Gil J, Castillo J R. Talanta, 2006, 68: 791-799

[59] Wang Y, Lu J, Tang L H, Chang H X, Li J H. Anal. Chem., 2009, 81: 9710-9715

[60] Zhang Y L, Wang Y, Wang H B, Jiang J H, Shen G L, Yu R Q, Li J H. Anal. Chem., 2009, 81: 1982-1987

[61] Munnecke D M. Biotechnol. Bioeng., 1979, 21: 2247-2261

[62] Russell R J, Pishko M V, Simonian A L, Wild J R. Anal. Chem., 1999, 71: 4909-4912

[63] Du D, Chen W J, Zhang W Y, Liu D L, Li H B, Lin Y H. Biosens. Bioelectron., 2010, 25: 1370-1375

[64] Laothanachareon T, Champreda V, Sritongkham P, Somasundrum M, Surareungchai W. World J. Microbiol. Biotechnol., 2008, 24: 3049-3055

[65] Qu Y H, Sun Q, Xiao F, Shi G Y, Jin L T. Bioelectrochemistry, 2010, 77: 139-144

[66] Kim G Y, Shim J, Kang M S, Moon S H. J. Environ. Monitor., 2008, 10: 632-637

[67] Choi J W, Kim Y K, Song S Y, Lee I H, Lee W H. Biosens. Bioelectron., 2003, 18: 1461-1466

[68] Morales M D, Morante S, Escarpa A, González M C, Reviejo A J, Pingarrón J M. Talanta, 2002, 57: 1189-1198

[69] Sohail M, Adeloju S B. Sensor. Actuat. B-Chem., 2008, 133: 333-339

[70] Bendikov T A, Kim J, Harmon T C. Sensor. Actuat. B-Chem., 2005, 106: 512-517

[71] Narayana B, Sunil K. Eurasian J. Anal. Chem., 2009, 4: 204-214

[72] Klosin'ska T, Radomski A, Zielenkiewicz T, Kowalczyk S. Annals of Warsaw University of Life Sciences-SGGW, Forestry Wood Technol., 2009, 68: 367-374

[73] Davenport R J, Johnson D C. Anal. Chem., 1973, 45: 1979-1980

[74] Albanese D, Di Matteo M, Alessio C. Computer Aided Chemical Engineering, 2010, 28: 283-288

[75] Sohail M, Adeloju S. Electroanal., 2009, 21: 1411-1418

[76] Cosnier S, Da Silva S, Shan D, Gorgy K. Bioelectrochemistry, 2008, 74: 47-51

[77] Kamyabi M A, Aghajanloo F. J. Electroanal. Chem., 2008, 614: 157-165

[78] Gieseke A, Tarre S, Green M, de Beer D. Appl. Environ. Microbiol., 2006, 72: 4283-4292

[79] Isoda N, Yokoyama H, Nojiri M, Suzuki S, Yamaguchi K. Bioelectrochemistry, 2010, 77: 82-88

[80] Zhang Z Q, Xia S Q, Leonard D, Jaffrezic-Renault N, Zhang J, Bessueille F, Goepfert Y, Wang X J, Chen L, Zhu Z L, Zhao J F, Almeida M G, Silveira C M. Biosens. Bioelectron., 2009, 24: 1574-1579

[81] Silveira C M, Gomes S P, Araújo A N, Montenegro M C B S M, Todorovic S, Viana A S, Silva R J C, Moura J J G, Almeida M G. Biosens. Bioelectron., 2010, 25: 2026-2032

[82] Chen Q P, Ai S Y, Zhu X B, Yin H S, Ma Q, Qiu Y Y. Biosens. Bioelectron., 2009, 24: 2991-2996

[83] Chen H, Mousty C, Chen L, Cosnier S. Mater. Sci. Eng, C, 2008, 28: 726-730

[84] Zazoua A, Hnaien M, Cosnier S, Jaffrezic-Renault N, Kherrat R. Mater. Sci. Eng, C, 2009, 29: 1919-1922

[85] Salimi A, Noorbakhsh A, Ghadermarzi M. Sens. Actuators, B, 2007, 123: 530-537

[86] EPA new: EPA Sets Reference Dose for Perchlorate, 2005. http: //www. epa. gov/fedfac/documents/perchlorate_links. htm#pgepadocs

[87] CDHS, Perchlorate Drinking Water Action Level and Regulation, D. o. H. Services, Editor. 2004: Sacramento, CA

[88] Okeke B C, Ma G Y, Cheng Q, Losi M E, Frankenberger Jr W T. J. Microbiol. Meth., 2007, 68: 69-75

[89] Yin C X, Su J, Huo F J, Yang P. Health, 2009, 1: 76-82

[90] Tsoulfanidis I A, Tsogas G Z, Giokas D L, Vlessidis, A G. Microchim. Acta, 2008, 160: 461-469

[91] Kulys J, Higgins I J, Bannister J V. Biosens. Bioelectron., 1992, 7: 187-191

[92] Parellada J, Narváez A, López M A, Domínguez E, Fernández J J, Pavlov V, Katakis I. Anal. Chim. Acta, 1998, 362: 47-57

[93] Bontidean I, Lloyd J R, Hobman J L, Brown N L, Mattiasson B, Csöregi E. American Chemical Society, 2000. 102-112

[94] Ghica M E, Brett C M A. Microchim. Acta, 2008, 163: 185-193

[95] Bontidean I, Berggren C, Johansson G, Csöregi E, Mattiasson B, Lloyd J R, Jakeman K J, Brown N L. Anal. Chem., 1998, 70: 4162-4169

[96] Berezhetskyy A L, Sosovska O F, Durrieu C, Chovelon J M, Dzyadevych S V, Tran-Minh C. IRBM, 2008, 29: 136-140

[97] Domínguez-Renedo O, Alonso-Lomillo M A, Ferreira-Gonalves L, Arcos-Martínez M J. Talanta, 2009, 79: 1306-1310

[98] Bagal-Kestwal D, Karve M S, Kakade B, Pillai V K. Biosens. Bioelectron., 2008, 24: 657-664

[99] Tsai H-c, Doong R-a. Biosens. Bioelectron., 2007, 23: 66-73

[100] Fiorentino D, Gallone A, Fiocco D, Palazzo G, Mallardi A. Biosens. Bioelectron., 2010, 25: 2033-2037

[101] Adamski J, Nowak P, Kochana J. Electrochim. Acta, 2010, 55: 2363-2367

[102] Kushwah B S, Bhadauria S. J. Appl. Polym. Sci., 2010, 115: 1358-1365

[103] Wang P, Liu M, Kan J. Sens. Actuators B, 2009, 140: 577-584

[104] Kochana J, Gala A, Parczewski A, Adamski J. Anal. Bioanal. Chem., 2008, 391: 1275-1281

[105] Fan Q, Shan D, Xue H G, He Y Y, Cosnier S. Biosens. Bioelectron., 2007, 22: 816-821

[106] ElKaoutit M, Naranjo-Rodriguez L, Temsamani K R, de la Vega M D, de Cisneros J L H H. J. Agr. Food Chem., 2007, 55: 8011-8018

[107] Dempsey E, Diamond D, Collier A. Biosens. Bioelectron., 2004, 20: 367-377

[108] Moccelini S K, Vieira I C, de Lima F, Lucca B G, Barbosa A M J, Ferreira V S. Talanta, 2010, 82: 164-170

[109] Ion A C, Ion I, Culetu A, Gherase D, Moldovan C A, Iosub R, Dinescu A. Mater. Sci. Eng, C., 2010, 30: 817-821

[110] Kim G Y, Shim J, Kang M S, Moon S H. J. Environ. Monitor., 2008, 10: 632-637

[111] Orbulescu J, Constantine C A, Rastogi V K, Shah S S, DeFrank J J, Leblanc R M. Anal. Chem., 2006, 78: 7016-7021

[112] Campanella L, Dragone R, Lelo D, Martini E, Tomassetti M. Anal. Bioanal. Chem., 2006, 384: 915-921

[113] Hmmerle M, Hilgert K, Achmann S, Moos R. Biosens. Bioelectron., 2010, 25: 1521-1525

[114] Demkiv O, Smutok O, Paryzhak S, Gayda G, Sultanov Y, Guschin D, Shkil H, Schuhmann W, Gonchar M. Talanta, 2008, 76: 837-846

[115] Achmann S, Hmmerle M, Moos R. Electroanal., 2008, 20: 410-417

[116] Khadro B, Namour P, Bessueille F, Leonard D, Jaffrezic-Renault N. Sensor. Mater., 2008, 20: 267-279

[117] Wang X J, Dzyadevych S V, Chovelon J M, Renault N J, Chen L, Xia S Q, Zhao J F. Talanta, 2006, 69: 450-455

[118] Kuralay F, zyörük H, YildIz A. Enzyme Microb. Tech., 2007, 40: 1156-1159

[1] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[2] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[5] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[6] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[7] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[8] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[9] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[10] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[11] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[12] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[13] 田丹碧, 吴胜男, 张浩, 江凌, 霍峰蔚. 荧光内滤效应技术在生物检测和疾病标志上的应用[J]. 化学进展, 2019, 31(2/3): 413-421.
[14] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[15] 梁晨希, 曹立新*, 张跃娟, 闫培生. 海洋毒素电化学生物传感器[J]. 化学进展, 2018, 30(7): 1028-1034.