English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 101-109 前一篇   后一篇

• 综述与评论 •

实时直接分析质谱的原理及应用

张佳玲, 霍飞凤, 周志贵, 白玉*, 刘虎威   

  1. 北京分子科学国家实验室 生物有机与分子工程教育部重点实验室 北京大学化学与分子工程学院分析化学研究所 北京 100871
  • 收稿日期:2011-04-01 修回日期:2011-06-01 出版日期:2012-01-24 发布日期:2011-11-22
  • 基金资助:

    国家自然科学基金项目(No.21027012,20805001,21175008)和中央高校基本科研业务费专项资金项目资助

The Principles and Applications of An Ambient Ionization Method——Direct Analysis in Real Time (DART)

Zhang Jialing, Huo Feifeng, Zhou Zhigui, Bai Yu*, Liu Huwei   

  1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2011-04-01 Revised:2011-06-01 Online:2012-01-24 Published:2011-11-22

新型常温常压离子化技术是近几年质谱学领域的一个研究热点。实时直接分析(direct analysis in real time,DART)作为该技术的一种,自2005年首次报道以来,已被应用于不同样品的分析。本文介绍了DART技术的发展过程、离子化机理以及影响DART离子化效率的参数,综述了其在活体果蝇费洛蒙检测、假药识别、墨水成分分析等方面的应用,并在结论部分对其应用前景进行了展望。

The development of ionization approach has been focused on the ambient ionization methods in the past decade. DART was first reported by Cody and coworkers in 2005 and has been widely applied in the analysis of various samples including solids, liquids or gases. Helium or nitrogen is chosen as the working gas of DART. The working gas is activated by discharge needle and subsequently heated in the heating cell for the further sample ionization. The DART technology needs minimal or no sample pretreatmentand direct analysis can be carried out by holding sample in the localization between the outlet of DART and the entrance of mass spectrometer. This review presents the development, the ionization mechanism, and the major operation parameters of DART. And the applications in direct analysis of pheromones from live drosophila, screening of counterfeit drugs, identification of ingredient of inksand other samples are summarized. In the end, the technological limitations and development trends of DART are also discussed.

Contents
1 Introduction
2 The geometry and ionization mechanism of DART
2.1 The geometry of DART
2.2 The ionization mechanism of DART
3 Parameters of DART
4 The applications of DART
4.1 Direct analysis of pheromones from live drosophila
4.2 Screening of counterfeit drugs
4.3 Identification of ingredient of inks
4.4 Other applications
5 Conclusions and perspectives

中图分类号: 

()

[1] Fernandez F M, Cody R B, Green M D, Hampton C Y, McGready R, Sengaloundeth S, White N J, Newton P N. Chem. Medchem., 2006, 1 (7): 702-705
[2] Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306 (5695): 471-473
[3] Cooks R G, Ouyang Z, Takats Z, Wiseman J M. Science, 2006, 311 (5767): 1566-1570
[4] Yamashita M, Fenn J B. J. Phys. Chem., 1984, 88 (20): 4451-4459
[5] Laiko V V, Baldwin M A, Burlingame A L. Anal. Chem., 2000, 72 (4): 652-657
[6] Cody R B, Laramee J A, Durst H D. Anal. Chem., 2005, 77 (8): 2297-2302
[7] Harris G A, Nyadong L, Fernandez F M. Analyst, 2008, 133 (10): 1297-1301
[8] Haddad R, Sparrapan R, Eberlin M N. Rapid Commun. Mass Spectrom., 2006, 20 (19): 2901-2905
[9] Haapala M, Pol J, Saarela V, Arvola V, Kotiaho T, Ketola R A, Franssila S, Kauppila T J, Kostiainen R. Anal. Chem., 2007, 79 (20): 7867-7872
[10] McEwen C N, McKay R G, Larsen B S. Anal. Chem., 2005, 77 (23): 7826-7831
[11] Takats Z, Cotte-Rodriguez I, Talaty N, Chen H W, Cooks R G. Chem. Commun., 2005, 1950-1952
[12] Na N, Zhao M X, Zhang S C, Yang C D, Zhang X R. J. Am. Soc. Mass Spectrom., 2007, 18 (10): 1859-1862
[13] Ratcliffe L V, Rutten F J M, Barrett D A, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, McCoustra M. Anal. Chem., 2007, 79 (16): 6094-6101
[14] Chen H W, Wortmann A, Zenobi R. J. Mass Spectrom., 2007, 42 (9): 1123-1135
[15] Huang M Z, Hsu H J, Wu C I, Lin S Y, Ma Y L, Cheng T L, Shiea J. Rapid Commun. Mass Spectrom., 2007, 21 (11): 1767-1775
[16] Nemes P, Vertes A. Anal. Chem., 2007, 79 (21): 8098-8106
[17] Sampson J S, Hawkridge A M, Muddiman D C. Rapid Commun. Mass Spectrom., 2007, 21 (7): 1150-1154
[18] Rezenom Y H, Dong J, Murray K K. Analyst, 2008, 133 (2): 226-232
[19] Cermak V, Herman Z. Chemical Physics Letters, 1968, 2 (6): 359-362
[20] Song L G, Gibson S C, Bhandari D, Cook K D, Bartmess J E. Anal. Chem., 2009, 81 (24): 10080-10088
[21] Cody R B. Anal. Chem., 2009, 81 (3): 1101-1107
[22] Yew J Y, Cody R B, Kravitz E A. Proc. Natl. Acad. Sci. U. S. A, 2008, 105 (20): 7135-7140
[23] Jones R W, Cody R B, McClelland J F. J. Forensic Sci., 2006, 51 (4): 915-918
[24] Curtis M E, Jones P R, Sparkman O D, Cody R B. J. Am. Soc. Mass Spectrom., 2009, 20 (11): 2082-2086
[25] Kpegba K, Spadaro T, Cody R B, Nesnas N, Olson J A. Anal. Chem., 2007, 79 (14): 5479-5483
[26] Maleknia S D, Vail T M, Cody R B, Sparkman D O, Bell T L, Adams M A. Rapid Commun. Mass Spectrom., 2009, 23 (15): 2241-2246
[27] Bennett M J, Steiner R R. J. Forensic Sci., 2009, 54 (2): 370-375
[28] Steiner R R, Larson R L. J. Forensic Sci., 2009, 54 (3): 617-622
[29] Petucci C, Diffendal J, Kaufman D, Mekonnen B, Terefenko G, Musselman B. Anal. Chem., 2007, 79 (13): 5064-5070
[30] Rothenbacher T, Schwack W. Rapid Commun. Mass Spectrom., 2010, 24 (1): 21-29
[31] Rothenbacher T, Schwack W. Rapid Commun. Mass Spectrom., 2009, 23 (17): 2829-2835
[32] Jagerdeo E, Abdel-Rehim M. J. Am. Soc. Mass Spectrom., 2009, 20 (5): 891-899
[33] Pierce C Y, Barr J R, Cody R B, Massung R F, Woolfitt A R, Moura H, Thompson H A, Fernandez F M. Chem. Commun., 2007, 807-809
[34] Yu S X, Crawford E, Tice J, Musselman B, Wu J T. Anal. Chem., 2009, 81 (1): 193-202
[35] Pena-Quevedo A J, Cody R B, Mina-Camilde N, Ramos M, Hernandez-Rivera S P. Proc. SPIE, 2007, 6538 (653828): 1-12
[36] Schurek J, Vaclavik L, Hooijerink H, Lacina O, Poustka J, Sharman M, Caldow M, Nielen M W F, Hajslova J. Anal. Chem., 2008, 80 (24): 9567-9575
[37] Zhao Y P, Lam M, Wu D L, Mak R. Rapid Commun. Mass Spectrom., 2008, 22 (20): 3217-3224
[38] Borges D L G, Sturgeon R E, Welz B, Curtius A J, Mester Z. Anal. Chem., 2009, 81 (23): 9834-9839
[39] Nilles J M, Connell T R, Durst H D. Anal. Chem., 2009, 81 (16): 6744-6749
[40] Vaclavik L, Cajka T, Hrbek V, Hajslova J. Anal. Chim. Acta, 2009, 645 (1/2): 56-63
[41] Banerjee S, Madhusudanan K P, Khanuja S P S, Chattopadhyay S K. Biomed. Chromatogr., 2008, 22 (3): 250-253
[42] Banerjee S, Madhusudanan K P, Chattopadhyay S K, Rahman L U, Khanuja S P S. Biomed. Chromatogr., 2008, 22 (8): 830-834
[43] Madhusudanan K P, Banerjee S, Khanuja S P S, Chattopadhyay S K. Biomed. Chromatogr., 2008, 22 (6): 596-600
[44] Haefliger O P, Jeckelmann N. Rapid Commun. Mass Spectrom., 2007, 21 (8): 1361-1366
[45] Cajka T, Riddellova K, Tomaniova M, Hajslova J. J. Chromatogr. A, 2010, 1217 (25): 4195-4203
[46] Haunschmidt M, Klampfl C W, Buchberger W, Hertsens R. Analyst, 2010, 135 (1): 80-85
[47] Haunschmidt M, Klampfl C W, Buchberger W, Hertsens R. Anal. Bioanal. Chem., 2010, 397 (1): 269-275
[48] Block E, Dane A J, Thomas S, Cody R B. J. Agric. Food Chem., 2010, 58 (8): 4617-4625
[49] Vaclavik L, Rosmus J, Popping B, Hajslova J. J. Chromatogr. A, 2010, 1217 (25): 4204-4211
[50] Dane A J, Cody R B. Analyst, 2010, 135 (4): 696-699
[51] Domin M A, Steinberg B D, Quimby J M, Smith N J, Greene A K, Scott L T. Analyst, 2010, 135 (4): 700-704
[52] Jeckelmann N, Haefliger O P. Rapid Commun. Mass Spectrom., 2010, 24 (8): 1165-1171
[53] Morlock G, Ueda Y. J. Chromatogr. A, 2007, 1143 (1/2): 243-251
[54] Galhena A S, Harris G A, Nyadong L, Murray K K, Fernandez F M. Anal. Chem., 2010, 82 (6): 2178-2181
[55] Eberherr W, Buchberger W, Hertsens R, Klampfl C W. Anal. Chem., 2010, 82 (13): 5792-5796
[56] Harris G A, Kwasnik M, Fernandez F M. Anal. Chem., 2011, 83 (6): 1908-1915
[57] Zhou Z G, Zhang J L, Zhang W, Bai Y, Liu H W. Analyst, 2011, 136 (12): 2613-2618
[58] Chen H W, Venter A, Cooks R G. Chem. Commun., 2006, 2042-2044
[59] Kim H J, Oh M S, Jang Y P. Phytochem. Analysis,2011, 22(3): 258-262
[60] Chernetsova E S, Bochkov P O, Ovcharov M V, Zhokhov S S, Abramovich R A. Drug Test. Anal., 2010, 2 (5/6): 292-294
[61] Watts K R, Loveridge S T, Tenney K, Media J, Valeriote F A, Crews P. J. Org. Chem., 2011, 76 (15): 6201-6208
[62] Sanchez L M, Curtis M E, Bracamonte B E, Kurita K L, Navarro G, Sparkman O D, Linington R G. Org. Lett., 2011, 13 (15): 3770-3773
[63] Mess A, Vietzke J P, Rapp C, Francke W. Anal. Chem., 2011, 83 (19): 7323-7330
[64] Deroo C S, Armitage R A. Anal. Chem., 2011, 83 (18): 6924-6928

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[5] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[6] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[7] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[8] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[9] 李瑜玲, 赵君博, 郭寅龙. 常压电喷雾离子化的机理及应用[J]. 化学进展, 2019, 31(1): 94-109.
[10] 任娟, 边申, 王奕允, 孔祥蕾. 幻数团簇丝氨酸八聚体:结构和手性特征[J]. 化学进展, 2018, 30(4): 383-397.
[11] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[12] 于洪涛, 陈硕, 全燮*, 张振华. 光催化水处理消毒的原理、材料和反应器[J]. 化学进展, 2017, 29(9): 1030-1041.
[13] 刘婧靖, 何晓伟, 何燕, 喻目千, 蒋乐, 陈波. 纸喷雾敞开式质谱法的发展和应用[J]. 化学进展, 2017, 29(6): 659-666.
[14] 孔龙娟, 李晖*. 衬底调制下的硼墨烯、硅烯、锗烯等单元素二维材料的原子与电子结构[J]. 化学进展, 2017, 29(4): 337-347.
[15] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
阅读次数
全文


摘要

实时直接分析质谱的原理及应用