English
新闻公告
More
化学进展 2012, Vol. 24 Issue (01): 1-7   后一篇

• Mini Accounts •

界面超分子化学与响应性功能表面

万鹏博1, Hill Eric H.2, 张希1   

  1. 1. 有机光电子与分子工程教育部重点实验室 清华大学化学系, 北京 100084;
    2. 化学和核工程系 生物医学工程中心 新墨西哥大学 阿尔布开克, 新墨西哥 87131-1341 美国
  • 收稿日期:2011-08-27 出版日期:2012-01-24 发布日期:2011-12-06

Interfacial Supramolecular Chemistry for Stimuli-Responsive Functional Surfaces

Wan Pengbo1, Hill Eric H.2, Zhang Xi1   

  1. 1. Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. Department of Chemical and Nuclear Engineering, Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131-1341, United States
  • Received:2011-08-27 Online:2012-01-24 Published:2011-12-06
超分子化学和界面的结合有效地促进了超分子化学和胶体与界面科学的发展。刺激响应性超分子界面,因在外界刺激作用下能够引起界面物理化学性质的改变并带来新的界面功能,而受到广泛的关注。近年来,溶液中基于偶氮苯环糊精主客体相互作用的超分子组装体已经得到了广泛的研究。我们将溶液中基于偶氮苯环糊精主客体作用的可控可逆超分子组装体转移到界面上,构筑了具有刺激响应性的功能化超分子界面,并实现了表面浸润性的可逆调控、生物大分子的可控吸附与脱附、光可控的生物电化学催化等功能。我们期待类似的概念可以拓展到其他超分子体系,构筑具有特定结构的功能界面。
The combination of supramolecular chemistry with interfaces enhances the development of supramolecular chemistry as well as colloid and interface science. Supramolecular chemistry at interfaces allows for the construction of various smart and soft surfaces that can adapt to environmental changes, such as biomimetic surfaces and self-cleaning surfaces. In this article, we discuss strategies for the transfer of supramolecular complexes of azobenzene and cyclodextrin from solution to surfaces for the fabrication of stimuli-responsive surfaces with novel interfacial functions including tunable surface wettability, reversible protein adsorption and resistance, and photo-switchable bioelectrocatalysis. It is anticipated that these concepts can be extended to other supramolecular systems in order to engineer functional surfaces with designed structures and functions. Contents
1 Introduction
2 Photocontrolled interfacial molecular shuttle for tunable surface wettabiloty
3 Dual-controlled reactivated biointerface for reversible protein immobilization
4 Nearly complete and reversible interfacial resistance of cytochrome c
5 Host-guest chemistry ar interfaces for photoswitchable bioelectrocatalysis
6 Conclusions
()
[1] Zhang X, Whitten D G. Langmuir, 2011, 27: 1245-1245

[2] Jiang Y G, Wan P B, Smet M, Wang Z Q, Zhang X. Adv. Mater., 2008, 20: 1972-1977

[3] Jiang Y G, Wang Z Q, Yu X, Shi F, Xu H P, Zhang X, Smet M, Dehaen W. Langmuir, 2005, 21: 1986-1990

[4] Shi F, Niu J, Liu J L, Liu F, Wang Z Q, Feng X Q, Zhang X. Adv. Mater., 2007, 19: 2257-2261

[5] Yu X, Wang Z Q, Jiang Y Q, Shi F, Zhang X. Adv. Mater., 2005, 17: 1289-1293

[6] Zhang X, Shi F, Niu J, Jiang Y Q, Wang Z Q. J. Mater. Chem., 2008, 18: 621-633

[7] Blodgett K B, Langmuir I. Phys. Rev., 1937, 51: 964-982

[8] Decher G. Science, 1997, 277:1232-1237

[9] Nuzzo R G, Fusco F A, Allara D L. J. Am. Chem. Soc., 1987, 109: 2358-2368

[10] Wang Y P, Xu H P, Zhang X. Adv. Mater., 2009, 21: 2849-2864

[11] Liao X J, Chen G S, Liu X X, Chen W X, Chen F E, Jiang M. Angew. Chem. Int. Ed., 2010, 49: 4409-4413

[12] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39: 681-691

[13] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40: 94-101

[14] Wang Y P, Zhang M, Moers C, Chen S L, Xu H P, Wang Z Q, Zhang X, Li Z B. Polymer, 2009, 50: 4821-4828

[15] Wang C, Wang Z Q, Zhang X. Small, 2011, 7: 1379-1383

[16] Klajn R, Stoddart J F, Grzybowski B A. Chem. Soc. Rev., 2010, 39: 2203-2237

[17] Wang Y P, Ma N, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2007, 46: 2823-2826

[18] Wan P B. Doctoral Dissertation of Tsinghua University, 2011

[19] Wan P B, Jiang Y G, Wang Y P, Wang Z Q, Zhang X. Chem. Commun., 2008, 5710-5712

[20] Wan P B, Wang Y P, Jiang Y G, Xu H P, Zhang X. Adv. Mater., 2009, 21: 4362-4365

[21] Wan P B, Chen Y Y, Xing Y B, Chi L F, Zhang X. Langmuir, 2010, 26: 12515-12517

[22] Wan P B, Xing Y B, Chen Y Y, Chi L F, Zhang X. Chem. Commun., 2011, 47: 5994-5996

[23] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361-374

[24] Coronado E, Gavina P, Tatay S. Chem. Soc. Rev., 2009, 38: 1674-1689

[25] Willner I, PardoYissar V. J. Electroanal. Chem., 2001, 497: 172-177

[26] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782-817

[27] Kawaguchi Y, Harada A. J. Am. Chem. Soc., 2000, 122: 3797-3798

[28] Mahan E J, Dennis J A. Org. Lett., 2006, 8: 5085-5088

[29] Jiao H, Goh S H, Valiyaveettil S. Macromolecules, 2003, 36: 4241-4243

[30] Mendes P M. Chem. Soc. Rev., 2008, 37: 2512-2529

[31] Xu J S, Bowden E F. J. Am. Chem. Soc., 2006, 128: 6813-6822

[32] Zhou J H, Lu X B, Hu J Q, Li J H. Chem. Eur. J., 2007, 13: 2847-2853

[33] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22: 920-932

[34] Ma H W, Wells M, Beebe T P, Chilkoti A. Adv. Funct. Mater., 2006, 16: 640-648

[35] Mohammed J S, Murphy W L. Adv. Mater., 2009, 21: 2361-2374

[36] Shipway A N, Willner I. Acc. Chem. Res., 2001, 34: 421-432

[37] Niazov T, Shlyahovsky B, Willner I. J. Am. Chem. Soc., 2007, 129: 6374-6375
[1] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[2] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[3] 汪含笑, 韩莹, 陈传峰*. 基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建[J]. 化学进展, 2018, 30(5): 616-627.
[4] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[5] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[6] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.