English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1837-1844 前一篇   后一篇

• 综述与评论 •

纳米晶/聚合物太阳能电池

付红红, 栾伟玲*, 袁斌霞, 涂善东   

  1. 华东理工大学机械与动力工程学院 承压系统安全科学教育部重点实验室 上海 200237
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 栾伟玲 E-mail:luan@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51172072)、中央高校基础研究基金项目(No.WJ0913001)、教育部科学技术研究重点项目(No.109063)和华东理工大学化学工程重点实验室基金项目(No.SKL-ChE-08C09)资助

Nanocrystal/Polymer Solar Cell

Fu Honghong, Luan Weiling, Yuan Binxia, Tu Shandong   

  1. The Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
纳米晶/聚合物太阳能电池作为一种新型光伏器件成为近年来的研究热点。通过改变纳米晶的形貌及尺寸来调节材料本身的带隙从而改善光吸收特性,并且无机半导体材料本身具有高的电子迁移率和良好的热稳定性,以上特性使该类电池具有巨大的发展潜力。本文从纳米晶的种类、形状和尺寸、表面配体及纳米晶与聚合物界面性能等方面综述了纳米晶/聚合物太阳能电池的研究现状。纳米晶形貌、太阳光利用率和载流子传输效率是影响电池效率的主要因素。文中指出开展窄带隙纳米晶的合成、优化纳米晶/聚合物电池结构、解析纳米晶与聚合物界面激子传输机理等改善该类电池性能的途径,旨在为提高纳米晶/聚合物太阳能电池的效率提供借鉴经验。
Hybrid solar cells based on nanocrystals and conjugated polymer are emerging as a suitable alternative to classical solar cells. This kind of solar cell has attracted great attentions, because of the absorption spectra tunable by the size, shape and composition of nanocrystals, and their higher electron transfer velocity than that of polymer. This article reviews the status of the nanocrystal/ polymer hybrid solar cells. The factors affecting the solar cell performance are critically examined including the size and morphology of nanocrystals, the capping ligand, and the interfacial charge transportations between nanocrystals and polymer. Several strategies for increasing the overall efficiency of this hybrid solar cell are discussed. Narrow band gap nanocrystals, structure optimizations and analysis of the mechanism of charge transportations are expected as the routes for future development of this solar cell.

中图分类号: 

()
[1] Venkataraman D, Yurt S, Venkataraman B, Gavvalapalli N. J. Phys. Chem. Lett., 2010, 1: 947-958
[2] He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y. Adv. Mater., 2011, 23: 4636-4643
[3] Huo L, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H. Angew. Chem. Int. Ed., 2011, 50: 9697-9702
[4] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30: 545-610
[5] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S, Zhu X Y. Science, 2010, 328(18): 1543-1547
[6] Eugenia M F, Josep A, Emilio P. J. Phys. Chem. Lett., 2010, 1: 3039-3045
[7] Greenham N C, Peng X, Alivisatos A P. Phys. Rev. B, 1996, 54: 17628-17637
[8] Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59-61
[9] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295: 2425-2427
[10] Sun B, Marx E, Greenham N C. Nano Lett., 2003, 3: 961-963
[11] Gur I, Fromer N A, Chen C P, Kanaras A G, Alivisatos A P. Nano Lett., 2007, 7: 409-414
[12] Dayal S, Kopidakis N, Olson D C, Ginley D S, Rumbles G. Nano Lett., 2010, 10: 239-242
[13] Yang J, Tang A, Zhou R, Xue J. Sol. Energ. Mat. Sol. C, 2011, 95: 476-482
[14] 刘艳山(Liu Y S), 王藜 (Wang L), 曹镛(Cao Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28: 596-599
[15] 刘冬梅(Liu D M), 覃东欢(Qin D H), 陶洪(Tao H), 韩丽丽(Han L L), 陈军武(Chen J W). 纳米科技(Nano Science and Nanotechnology), 2009, 6: 14-17
[16] Yang H, Luan W, Tu S T, Wang Z M. Lab Chip, 2008, 8: 451-455
[17] Yang H, Luan W, Tu S T, Wang Z M. Cryst. Growth Des., 2009, 9: 1569-1574
[18] Kumar S, Nann T. J. Mater. Res., 2004, 19: 1990-1994
[19] Tsang S W, Fu H, Wang R, Liu J, Yu K, Tao Y. Appl. Phys. Lett., 2009, 95: art. no. 183505
[20] Guenes S, Fritz K P, Neuberger H, Sariciftci N S, Kumar S, Scholes G D. Sol. Energ. Mat. Sol. C, 2007, 91: 420-423
[21] McDonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J D, Levina L, Sargent E H. Nat. Mater., 2005, 4(2): 138-142
[22] Qi D, Fischbein M, Drndic M, Selmic S. Appl. Phys. Lett., 2005, 86(9): art. no. 093103
[23] Chaudhari K R, Sahoo Y, Ohulchansky T Y, Prasad P N. Appl. Phys. Lett., 2005, 87: art. no. 073110
[24] Beek W J E, Wienk M M, Janssen R A J. Adv. Funct. Mater., 2006, 16(8): 1112-1116
[25] 刘俊朋(Liu J P), 曲胜春(Qu S C), 曾湘波(Zeng X B), 许颖(Xu Y), 陈涌海(Chen Y H), 王智杰(Wang Z J), 周慧英(Zhou H Y), 王占国(Wang Z G). 半导体学报(Chinese Journal of Semiconductors), 2007, 28(Z1): 364-368
[26] Beek W J E, Wienk M M, Janssen R A J. Adv. Mater., 2004, 16: 1009-1013
[27] Beek W J E, Wienk M M, Janssen R A J. J. Mater. Chem., 2005, 15: 2985-2988
[28] Das N C, Sokol P E. Renew. Energ., 2010, 35: 2683-2688
[29] Said A J, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Boucle J, Nelson J, Durrant J R, Ackermann J. J. Phys. Chem. C, 2010, 114: 11273-11278
[30] Coakley K M, Liu Y, McGehee M D, Stucky G D. Adv. Funct. Mater., 2003, 13: 301-306
[31] Coakley K M, McGehee M D. Appl. Phys. Lett., 2003, 83: 3380-3382
[32] Ravirajan P, Haque S A, Durrant J R, Bradley D D C. Adv. Funct. Mater., 2005, 15: 609-618
[33] Noone K M, Anderson N C, Horwitz N E, Munro A M, Kulkarni A P, Ginger D S. ACS Nano, 2009, 3 (6): 1345-1352
[34] Zhou Y, Li Y, Zhong H, Hou J, Ding Y, Yang C, Li Y. Nanotechnology, 2006, 17: 4041-4047
[35] Irina L, Nikolay R, Florian W, Holger B, Jurgen P, Joanna K O. J. Phys. Chem. C, 2010, 114: 12784-12791
[36] Owen J S, Park J, Trudeau P E, Alivisatos A P. J. Am. Chem. Soc., 2008, 130: 12279-12281
[37] Olson J D, Gray G P, Cater S A. Sol. Energ. Mat. Solar C, 2009, 93: 519-523
[38] Sih B C, Wolf M. J. Phys. Chem. C, 2007, 111: 17184-17192
[39] Aldakov D, Chandezon F, de Bettignies R, Firon M, Reiss P, Pron A. Eur. Phys. J. Appl. Phys., 2006, 36: 261-265
[40] Zhou Y, Frank S R, Ying Y, Schleiermacher H F, Niggemann M, Urban G A, Krüger M. Appl. Phys. Lett., 2010, 96: art. no. 013304
[41] Zutz F, Lokteva I, Radychev N, Olesiak J K, Riedel I, Borchert H, Parisi J. Phys Status Solidi A, 2009, 206(12): 2700-2708
[42] Sun B Q, Greenham N C. Phys. Chem. Chem. Phys., 2006, 8: 3557-3560
[43] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17: 1636-1644
[44] Huynh W U, Dittmer J J, Libby W C, Whiting G L, Alivisatos A P. Adv. Funct. Mater., 2003, 13: 73-79
[45] Wu Y, Zhang G. Nano Lett., 2010, 10: 1628-1631
[46] Zotti G, Vercelli B, Berlin A, Pasini M, Nelson T L, McCullough R D, Virgili T. Chem. Mater., 2010, 22: 1521-1532
[47] Freitas J N, Grova I R, Akcelrud L C, Arici E, Sariciftci S, Nogueira A F. J. Mater. Chem., 2010, 20: 4845-4853
[48] Fu H H, Choi M, Luan W, Kim Y S, Tu S T. Solid State Electron., 2012, 69: 50-54
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[10] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[11] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[12] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[13] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[14] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[15] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
阅读次数
全文


摘要

纳米晶/聚合物太阳能电池